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1 Introduction

1.1 What can be found in this guide?

This is the User Guide of the LOTOS-EUROS model. The purpose of this guide is to provide
information on how to:

• obtain a copy of the source code;

• compile and setup a simulation;

• run the model

• add new parts to the code

For information about the physical processes and parameterization used in the model we
refer to Manders et al. (2023).

The User Guide contains the following chapters.

• Chapter 2 describes the various websites related to the model.

• How to install the model is described in Chapter 3 on the version control system, and
Chapter 4 on the structure of the source files.

• How to compile and run the model is described in Chapter 5. This requires proper
configuration of paths to data and run directories, compiler names, library locations,
etc.; details are discussed in Chapter 6 on libraries, Chapter 7 on pre-processing
macro’s, and Chapter 8 on input data.

• Chapters 9 on the grid, 11 on meteorological data, 13 on the chemistry code, and 15
on output are useful when a user would like to adapt the configuration of the model.

• The final chapters discus more in-depth elements such as employing parallel compu-
tation (17), post-processing tools (18), additional tools (19), and coding conventions
(21).

1.2 Raw documentation

The original text of this User Guide is written in LaTeX format.

A pdf version can be created with:

make pdf

or, for the open-source release:

make open−pdf

Use ’make help’ to see options and other targets.
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2 Websites

2.1 Public model website

The main source of information on LOTOS-EUROS is the public website:

airqualitymodeling.tno.nl/lotos-euros

The website contains general information, links to the operational forecasts, documents, an
overview of publications, and information on how to obtain the open-source version.

2.2 Local documents

Internal documents including validation reports can be found on the MODAS SV:

/ tsn . tno . n l / Data /SV/ sv−059025 un i x / models /LOTOS−EUROS/ doc

http://airqualitymodeling.tno.nl/lotos-euros
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3 Version control system

3.1 Introduction

The source files of the LOTOS-EUROS model are managed with a version control system.
With such a system users can obtain an up-to-date copy of the files, archive their changes,
obtain changes made by other users. Currently ’git’ is used for this.

Throughout this User Guide some examples will be given on how to use the git package
to manage files. By default we assume that the ’git’ program is a available, which is a
standard tool in a Linux environment.

3.2 GitLab server

A GitLab site provides a web interface to browse through the files hosted under git. In
addition, the site offers a wiki, issue tracking, and other features for devellopment.

The TNO internal devellopment version of LOTOS-EUROS is hosted at this gitlab site:

https://ci.tno.nl/gitlab/modas/lotos-euros

3.3 Checkout a copy of the source

To obtain a fresh and up-to-date source code, checkout a complete version from the server:

g i t c lone g i t@ci . tno . n l : modas / lo tos−euros . g i t

3.4 Managing source files with Git

To learn more about using Git, got to the wiki page on the GitLab site for first steps.

Some quick steps:

• To see if you changed some files in or below the current directory:

g i t s ta tus

• To import changes made by others:

g i t f e t ch
g i t p u l l

• To add a new file to the repository:

g i t add newcode . F90

• To commit a change to the server:

g i t commit −m ’ This i s an impor tan t change . ’ newcode . F90

https://ci.tno.nl/gitlab/modas/lotos-euros
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• To push your commits it to the repository such that other users can pull it:

g i t push
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4 Source files

4.1 Identification of a model version

Each model version is given a three-leveled key, for example ”v2.3.000”. Here, the first
2 numbers identify the base version number (”v2.3”) while the third one is a patch num-
ber (”000”). New base versions are usually released before the beginning of a new year.
Throughout the year, patches might be released to fix a bug or to add new functionality to
the current base version. Checklists for how to create new versions and patches is left for
chapter 20.

If you are a new user it is advised to simply use the latest version. As explained in the next
section, list the directory ’base’ to see what is the latest patch in your copy.

4.2 Directory structure

The LOTOS-EUROS model is shipped in the following directory structure:
l o tos−euros / v2.3 / # Version d i r e c t o r y

README # f i r s t a id i n fo rma t i on .
base / # base sources

000/ # patch d i r e c t o r i e s
001/ #

: #
p r o j / # m o d i f i c a t i o n s to the base source

t o o l s / # Other ( genera l ) t o o l s
t t b /
diadem /
:

The ’tools’ directory is described in chapter 19, for the model only the ’lotos-euros/v2.3
directory is important.

At the level of the patch number (000 etc), a number of sub-directories is present with
prescribed names, that help to keep Fortran files, scripts, and other data clearly separated
from each other:

base / 000 / src / # For t ran sources
base / 000 / b in / # s c r i p t s
base / 000 / rc / # c o n f i g u r a t i o n f i l e s
base / 000 / data / # data tab les

:
p r o j / testchem / 000 / src /
p r o j / testchem / 000 / b in /

:

During the setup of a run, a copy of the source files is created in a temporary build directory,
and then compiled over there. The source directories are therefore not polluted by object
and module files.

4.3 Patch directories

A patch is an official update of the base, for example with a bug fix or with a new feature
that is supposed to become part of a new release. The code of a patch version is stored in
the ’base’ directory:

base /000 / # i n i t i a l base vers ion
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base /001 / # f i r s t update
base /002 / # second update
base /003 / # . . .

:

The complete code of a base+patch is stored in the patch directory.

In the rest of this document we will simply refer to a ’base+patch’ code as a ’base’ version.
If not specified explicitly, the initial patch number is ’000’.

4.4 The concept of source projects

A base directory like ’base/000’ contains a frozen version of the model. A base version
should run without any problem.

In addition to a base, a project could be defined as a modification of files in the base source.
A project could also include new files that are not part of the base yet. Typically, projects
are defined to:

• implement a non-standard feature that is very specific to an infrequently used appli-
cation.

• create special output required for some applications.

• test new module features.

For example, a source code could be combined from the following directories:

base /000 / src / # base+patch
p r o j / testchem /000 / src / # t e s t code
p r o j / myoutput /000 / src / # user s p e c i f i c

In here, the ’base/000/src’ directory contains a complete model source, from which some
files are replaced by those from the ’proj /testchem/000’ directory, and in addition by some
from the proj /myoutput/000’ directory. The order is important: the latest version of a file that
is copied will be the one that is actually compiled.

A list of projects to be used should be specified in the run configuration file (explained in
section 5.5). For this example it will look like:

my. source . d i r s : base /000 \
p r o j / testchem /000 \
p r o j / myoutput /000

Although not necessary, it is good practice to include the patch number as a sub-directory
of a project. In this way it is immediately clear to which patch this project is an extension.
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5 Running LOTOS-EUROS

This chapter describes how to configure and start a run with the LOTOS-EUROS model. In
section 5.1 a quick start is presented; from section 5.2 onwards the steps are explained in
more detail.

5.1 Quick start

LOTOS-EUROS can be run by taking the following steps. This is just to give a first impres-
sion or a quick reminder; for details, take a look at the sections that follow.

1. Go to the required version directory:

cd lo tos−euros / v2.3

2. Decide which patch number should be used, for example ’000’. Template settings for
this patch are available in:

base / 000 / rc / lo tos−euros . rc

This is the main rc file and once the version is properly installed often the only file
that has to be adapted. Browse through it to see if the settings (e.g. run identification,
time, domain, species, emissions) for your run are ok. Eventually create a copy and
modify for a specific run.

3. Setup a run-directory, compile an executable, and run or submit the job script(s) using:

. / base / 000 / b in / setup−l e base / 000 / rc / l o tos−euros . rc

5.2 Version directory

The best place to setup and start the model is from what we will call the ’version directory ’
directory. Change to that directory before following the next steps:

cd lo tos−euros / v2.3

5.3 Run scripts

The script(s) used to setup, start, and submit a LOTOS-EUROS run are placed in:

base / 000 / b in /

The ’setup-le’ script is the main script for each run.

5.4 Python files

Tools used to setup a simulation are placed in:

base / 000 / py /
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5.5 Rc-files

The configuration of a model run is done through a text file called the ’rc’-file. The abbrevi-
ation ’rc’ comes from ’resource’, or actually the Unix ’X-resource file on which the format is
based. However, also ’run configuration’ is a suitable expansion.

5.5.1 Overview of rc-files

The top-level rc file ’lotos-euros.rc’, contains the definition the run id, selects a version
the base source and eventually project code, defines a time range and domain, selects
emissions and boundary conditions, etc. To keep the main file as short as possible, detailed
configurations are included from other rc files, for example:

• lotos-euros-regions.rc in which several model domains are predefined;

• lotos-euros-landuse.rc in which settings and file names for the land use files are
defined;

• lotos-euros-meteo.rc in which paths and settings for input meteorology are defined;

• lotos-euros-emissions.rc in which paths and settings for anthropogenic emissions
are defined;

• lotos-euros-bound-*.rc files in which paths and settings for several sets of bound-
ary conditions are given;

• lotos-euros-output.rc in which one can specify the species and fields that have to
be put out.

Also a number of build/compile/run settings are need; these have been distributed into:

• lotos-euros-jobtree.rc that defines the jobs that together perform a simulation,
e.g. to build, initialize, and run a job.

• lotos-euros-build.rc in which macros and supported species are defined (section
5.5.6).

• machine-*.rc files with system-specific settings like compiler and libraries;

• compiler-*.rc files with compiler specific flags;

The top-level rc file lotos-euros anywhere.rc contains with default settings for running
outside the European domain. It configures a run to use land use and emissions sets that
are available globally, but might be less detailed as what has been collected for Europe.

5.5.2 Start: copy from template

To configure your own run, best is create a sub-directory to store your settings:

mkdir −p p r o j / mytest / 000 / rc

This defines that for your project ’mytest ’ you will use patch ’ ‘\modelpatch‘’. The sub-
directory ’rc’ is used to keeps settings seperated from source files (that you might want
to change too in future).

Then make a copy of one of the template top-level rc-files:

cp base / 000 / rc / l o tos−euros . rc p r o j / mytest / 000 / rc / l o tos−euros . rc
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Modify it using a text editor, or at least browse through it to see if the settings for your run are
ok. It should be self-explanatory with sections for time, grid, species, chemistry, emissions,
boundary conditions, landuse, output, use of restart files, etc. Below, the format is explained
and some .rc files are treated in more detail. The others should be self-explanatory when
opened in an editor.

5.5.3 Format of the rc-file

In this section the ideas and conventions of the .rc file are explained. A simple example of
a part in the rc-file could be:

! name of i npu t f i l e :
l e . i npu t : / data / a . t x t

This assigns the value ”/data/a.txt” to the key ”le.input”. Tools are available for the run
scripts and the model to read values from an rc-file given the keys. The basic format rules
for the rc-file are:

• Keys and values are separated by ’:’ .

• Empty lines are ignored.

• Comment lines start with ’!’ and are ignored as well.

More advanced usage is possible, for example expansion of keys or environment variables,
and conditional setting using if-statements. For a description of the features see the header
of:

base / 000 / py / rc . py

The best way to learn about all configuration options is to browse through the template
rc-file. The added comments explain the use of the various keys and the values they can
take.

5.5.4 The machine-specific rc-file

An import setting in the main rc-file is the selection of the ’machine’ specific rc-file. This file
contains all settings specific for the computer on which the model is running, e.g. compiler
settings, library locations, data locations, etc. A template is available:

base / 000 / rc / machine−template . rc

For each institute/machine combination, a machine-specific rc-file should be created. The
settings are included in the top-level rc-file via:

! i nc lude s e t t i n g s :
# inc lude base / ${my. patch . nr } / r c / ${my. machine . rc }

When GNU environment modules are used on your computer, the machine settings might
be used to insert ’module’ commands in the top of job scrips. For the TNO server this is for
example used to load the correct environment:

! modules loaded i n job s c r i p t s :
* . modules : purge ; \

load slurm /18 .08 .8 ; \
load gcc−s u i t e / 8 . 2 . 0 ; \
load openmpi / 4 . 0 . 5 ; \
load netcdf−c / 4 . 7 . 4 ; \
load netcdf−f o r t r a n / 4 . 5 . 3 ; \
load udun i ts / 2 . 2 . 2 6
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See chapter 6 for information about the external libraries that should be configured in the
machine rc file.

5.5.5 The compiler rc-file

The machine-specific rc-file includes a file with compiler-specific settings:

! compi ler s p e c i f i c s e t t i n g s :
# inc lude base / ${my. patch . nr } / r c / compi ler−gcc−v5 . 3 . 0 . rc

For each compiler suite used to compile the model, a compiler-specific file should be
present.

5.5.6 The build rc-file

Many settings that have to do with the setup and installation of the model have been hidden
for the users by collecting them in the ’build’ rc-file, which is included into the main rc file:

! i nc lude exper t s e t t i n g s to b u i l d source code
# inc lude base / ${my. patch . nr } / r c / l o tos−euros−b u i l d . rc

Do not modify this file unless you know what you are doing!

5.6 Setup script

To setup a run, first go to the model version directory:

cd lo tos−euros / v2.3

Call the setup script with the rc file as argument to create a run-directory and compile an
executable:

. / base / 000 / b in / setup−l e p r o j / mytest / 000 / rc / l o tos−euros . rc

To see the extra options that are accepted by the setup script, use:

. / base / 000 / b in / setup−l e −−help

Note that all ’long’ options like ’−−help’ usually have a ’short’ version too, in this case ’−h’ .

A useful option is ’−−new’ or ’−n’, which first removes the existing build directory followed
by creating a completely new one. In case you receive strange errors from the compiler,
that might have to do with messing up old and new objects, so try whether this option solves
the problems.

5.7 The job-tree

The ’setup−le’ script will start a squence of jobs to initialize and run a LOTOS-EUROS
simulation.

By default the jobs are:

• le .copy job will copy the source codes to a run directory;

• le . build job will compile an executable;
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• le .run job will run the executable, this is the actual simulation;

• le .post job will post-process the output (if necessary).

The list of jobs to be created is defined in:

l o tos−euros−j o b t r e e . rc

with:

j o b t r e e . l e . elements : copy b u i l d run post

The ’le .copy’ job will always run in the foreground.

The ’le . build ’ job should probably run in foreground too, since this helps to quickly see
compilation errors. This is defined in:

l o tos−euros . rc

with:

! copy job i s running i n foreground ( see ” lo tos−euros−j o b t r e e . rc ” ) ,
! enable the f o l l o w i n g l i n e to have also the b u i l d job i n foreground :
j o b t r e e . l e . b u i l d . s c r i p t . c lass : utopya . UtopyaJobScriptForeground

The default destination for the ’run’ and other jobs is probably to submit it to a queue sys-
tem. Since the queue system is diffent on each platform, the destination is defined in the
machine-specific settings (section 5.5.4). For the TNO platform the SLURM queue should
be used:

! d e f a u l t c lass w i th the job s c r i p t c rea to r :
* . s c r i p t . c lass : utopya . UtopyaJobScriptBatchSlurm

This defines that the header of a job file should have comments with SLURM job options.
See the examples of machine specific settings for inspiration on configure job settings for
your own queue system.

5.8 The ’le.copy’ job

This job is the first that is performed and will create a run directory with a copy of the source
code.

5.8.1 Run directory

The first step taken by the ’le .copy’ job is to create a run directory on a location specified
in the rc-file. Typically the run-directory will be located on a scratch space, since a lot
of temporary files are created while running that do not have to be backed-up. A typical
content of the the run directory is:

<rund i r >/ b u i l d / # source code , ob jec t f i l e s
<rund i r >/ run / # executable , rc−f i l e s , submit s c r i p t , log f i l e s
<rund i r >/ ou tput / # output f i l e s
<rund i r >/ r e s t a r t / # r e s t a r t f i l e s }

5.8.2 Run-time rc-file

The ’copy’ job will also create a run-time rc-file. This a single settings file with all includes
and variable substitutions resolved; see section 5.5.3 for details.

The run-time rc-file is put in the directory:
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<rund i r >/ run / lo tos−euros . rc

5.8.3 Collection of a source code

The next step is the collection of a source code in a build directory. The build directory is
usually located on a temporary scratch disk, the exact location is specified in the rc-file.
The sub-directory where the code is collected includes the name of the compiler and the
choices for the compiler flags (see section 5.9.3 for the compiler flag settings). This is done
to ensure that an executable is compiled with the same flags applied for all source files. An
example of a sub-directory name:

<rund i r >/ bu i l d op t im−none check−a l l / s rc /

The concept of source projects is explained in section 4.4. In summary, the first collected
source files are those in the ’base/xxx’ directory. Subsequently, the files from the base
version are overwritten by patches or project specific versions from ’proj/’ directories ac-
cording to the specification in the main .rc file.

For example, the rc-file might contain the following setting for the list of source directories
to be included:

my. source . d i r s : base / 000 \
p r o j / testchem / 000 \
p r o j / myoutput / 000

In this example, the LOTOS-EUROS source is formed from:

1. the files in ’base/000/src’ . . .

2. . . . or those from ’proj/testchem/000/src/’ . . .

3. . . . or those from ’proj/myoutput/000/src/’.

The test files in ’proj/testchem/000/src/’ will not affect the ’official’ versions of the code.
Thus, if you want to change something in the code, create a new project directory and
implement your changes there.

5.9 The ’le.build’ job

The ’le . build ’ job configures the source files and compiles an executable.

5.9.1 Generation of source files

Some source code files are generated by the scripts using settings in the rcfile and data
tables. These are:

• source files with tracer definitions and chemistry codes (see section 13);

• preprocessing macro include files (section 7).

Default versions of the generated source files are included in the base source. Editing won’t
have any effect; instead change the rcfile settings or the tables that were used to generate
them.
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5.9.2 Creation of the Makefiles

The ’pycasso’ scripting automatically creates the Makefiles using the ’makedepf90’ program.
If this program is not available, instructions are displayed.

5.9.3 Compilation

The final step performed by the ’setup−le’ script is the compilation of the executable.

An important configuration choice for compiling is setting the compiler flags. By default, the
executable is compiled with the ’fast’ flags to have a run-time as low as possible. For testing
and debugging it is however useful to enable the ’check’ flags, which could for example
trap out-of-array-bound problems and floating-point-exceptions (division by zero etc). After
changing the code, first run with checks enabled!.

The flags to be applied can be set in the pycasso rc file by a list of keywords. The default
setting for compilation with the fast flags is:

my. b u i l d . con f igu re . f l a g s : optim−f a s t

For testing and debugging purposes, the ’check’ flags can be turned on with:

my. b u i l d . con f igu re . f l a g s : optim−debug check−a l l debug

The actual flags assigned to these keywords are set in the compiler rc-file described in
section 5.5.5.

5.10 The ’le.run’ job

This is the actual run.

The executable is started either directly, or via an MPI started to have the correct environ-
ment for the domain decomposition.

5.11 The ’le.post’ job

This job is currently only used to compress output files. The compression is done using the
’NCO’ tools.
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6 External libraries

6.1 Library settings

The location of external libraries such as NetCDF is strongly dependend on the machine
where the model is compiled. Configuration is therefore done in the machine settings file
described in section 5.5.4.

6.2 Librararies used in base code

The following external libraries are currently used, of which NetCDF is the only obligatory.

6.2.1 NetCDF library

This library is required for:

• reading meteorological and other input data;

• writing model output.

The model does not use NetCDF-4 feautures yet; it is therefore sufficient to link with a
NetCDF-4 library that was compiled without NetCDF-4 features enabled, or even with a
classic NetCDF-3 library.

The machine-specific settings (section 5.5.4) specify the compile and link flags for this
library, for example:

compi ler . l i b . ne tcd f . f f l a g s : − I / opt / i nc lude
compi ler . l i b . ne tcd f . l i b s : −L / opt / l i b − l n e t c d f f − l n e t c d f

Note that in case shared libraries are used (as in this example), then it might turn out to
be necessary to tell the linker to add the path to the shared libraries to the runtime search
path:

compi ler . l i b . ne tcd f . l i b s : −L / opt / l i b − l n e t c d f f − l n e t c d f \
−Wl,− rpa th −Wl , / opt / l i b

6.2.2 UDUnits library (optional)

The UDUNITS library is used to check if units read from a file match with the units used in
the model. Some common unit comparisons have been hard-coded, so that for example
for the test input provided with the open-source version the UDUNITS library is actually not
necessary. In that case, the need for a UDUNITS library could be disabled in the machine
rcfile (section 5.5.4) using the empty setting:

my. udun i ts . de f ine :

If the model complains however that a certain unit check cannot be performed, either hard-
code a comparison on the location identified by the error message, or enable the need for
a UDUNITS library. The UDUnits library might be available as version 1 or 2; since the
interface is rather different between these, it was necessary to distuinguish between them
in the code. Therefore, the flag in the machine settings should define explictly which version
is available on the system:
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! ˜ vers ion 1 i s a v a i l a b l e :
!my. udun i ts . de f ine : w i t h udun i t s1
! ˜ vers ion 2 i s a v a i l a b l e :
my. udun i ts . de f ine : w i t h udun i t s2

Note that for version 2 a C-binding in used that requires a compiler with F2003 support.

6.2.3 LAPack library (optional)

The LAPACK library is needed by the labeling code is enabled. When using Intel compiler
suite, the optimized Intel Math Kernel Library (MKL) should be used.

6.3 Adding new libraries

To compile the model with new libraries, configurations are required at a number of levels.

• The user should explicitly enable the required libraries using macro definitions. For
example, to compile with the HDF5 library, introduce a new macro ’with hdf5’ following
the instructions in chapter 7.

• Ensure that this macro is defined by adding it to the ’define’ list in the expert settings
(section 5.5.6):

b u i l d . con f igu re . macro . de f ine : w i t h n e t c d f w i th hd f5

• For this macro, provide a list with library names that should be linked with. For ex-
ample, if HDF5 is required, then also a number of compression libraries should be
linked. For this, the expert settings should contain a definition similar to:

b u i l d . con f igu re . l i b s . i f d e f . w i th hd f5 : hdf5 sz jpeg z

• The order in which the libraries should be linked is defined by:

b u i l d . con f igu re . l i b s . a l l : ne tcd f hdf5 sz jpeg z

• The machine-specific settings (section 5.5.4) specify the compile and link flags for a
library, for example:

compi ler . l i b . hdf5 . f f l a g s : − I / opt / i nc lude
compi ler . l i b . hdf5 . l i b s : −L / opt / l i b − l h d f 5 h l \

− l h d f 5 f o r t r a n − l hd f5
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7 Pre-processor macro’s

Preprocessing macro’s are a convenient tool in programming large applications. This chap-
ter describes the use of these macro’s in the LOTOS-EUROS source.

7.1 Expert settings

Working with macro’s is considered an expert job, since small typo error could cause a
part of the code to be omitted without noticing. Therefore, the expert rcfile includes lists
of macro’s that are supported. The source code is checked on use of macro’s that are not
supported; if these are found, an error is raised and configuration stops. The lists in the
expert rcfile are used to add macro definitions to the proper macro include file.

7.2 Example of usage

Sometimes a minor modification of the actual source code is needed, for example because
certain compilers cannot digest a piece of code, or to enable code that depends on an
external library that might not be available (but is not always needed either). For this so-
called pre-processing macro’s are used. For example, the following code hides the use of
the HDF4 library that is usually only needed for very specific input files:

# i f d e f w i th hd f4
! open hdf f i l e :
c a l l HF90 Open ( ’ i npu t . hdf ’ , HF90 READ, hd f i d , s ta tus )
. . .

#e lse
stop ’ not compiled wi th HDF4 l i b r a r y enabled ’

# end i f

In this example, if the macro ’with hdf4’ is defined, then only the code between ’# ifdef ...
...’ and ’#else’ is used, otherwise the code between ’#else’ and ’#endif’ is used. If the code is
compiled with the HDF4 library enabled, then the macro ’with hdf4’ should be defined and
the file ’input.hdf’ will be opened as specified, if this piece of code is called. However, a
user wants to run the model, but does not need to read HDF4 files, the macro definition
could be omitted. This is in particular useful if this library is not available; the user should
not be bothered with a compiler complaining that a library is not available while it is not
used anyway.

7.3 Macro definition include files

Macro’s are defined by statements like:

# def ine w i th hd f4

All macro definitions are collected in small include files. For example, for macro definitions
in LOTOS-EUROS source files the include file ’le . inc’ could look like:

!
! Inc lude f i l e w i th macro d e f i n i t i o n s .
!
# de f ine w i th hd f4

This file is included in the header of a file with:

# inc lude ” l e . i nc ”
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7.4 User settings

Which macro’s are defined is something that is often user and application dependent.
Therefore, a list of macro’s to be defined is part of the rcfile:

my. l e . de f ine : w i th hd f4

From the values in this list the macro include file(s) are written automatically by the source
configuration scripts.
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8 Input data

8.1 Test package

A package with input data is available to run the model with the default settings to verify
proper installation. They can be downloaded from the SharePoint site. MACC III emission
data is not included but can be obtained upon request. Meteorological data and boundary
conditions from MACC cannot be provided by TNO.

8.1.1 Content

The content is as small as possible, but large enough for a model run with the following
properties:

• simulation period August 2012;

• European domain as used for operational forecast;

• MACC-II emissions 2009);

• boundary conditions from climatology

The directory tree of the data is as follows:

i npu tda ta /
/ ammonium /
/ bound /
/ cf−standard /
/ emissions /

/CAMS/REG/ v2 2 1 /
/ LEIP /

/ europe w30e70s5n75 /
/ECMWF/ od / # meteo
/MACC/ f i r e /

/ landuse /
/ f o r e s t /
/ s o i l t e x t /
/ so i lwa te r avg /
/ t r a f f i c /

/ standard /

8.1.2 Settings

The location of the input data is machine specific and therefore set in the ’machine.rc’ file:

my. data . d i r : / data / i npu tda ta

8.2 See also

For more detailed information on certain types of input data, see:

• chapter 11 on meteorological data;

• chapter 12 on boundary conditions.
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9 Horizontal grid

9.1 Grid definition

Two different grid types are supported: a regular longitude/latitude grid (”cartesian”), and a
grid that is curved in longitude/latitude sense (”non-cartesian”).

9.1.1 Cartesian grid

The default grid for most runs is regular in longitudes and latitudes, thus with equal spacing
in degrees in both directions. In longitudes/latitudes the domain is square (figure 9-1, left
panel).

The rcfile should first specify the grid type:

! de f ine g r i d type :
g r i d . type : ca r tes ian

For this grid type, the settings should then specify the lower-left corner, the resolution, and
the grid size:

g r i d . west : −15.0
g r i d . south : 35.0
g r i d . d lon : 0.50
g r i d . d l a t : 0.25
g r i d . nx : 100
g r i d . ny : 140

Template grid definitions are available in:

l o tos−euros−reg ions . rc

If this file is included in the main rcfile, the grid definition to be used should be selected using
a keyword. For example, the following settings will enable the ’MACC-II’ grid definition as
used in the operational CAMS forecasts:

! s e l e c t g r i d used by ope ra t i ona l f o recas ts :
g r i d . name : MACC− I I

! g r i d d e f i n i t i o n s :
# inc lude base / ${my. patch . nr } / r c / l o tos−euros−reg ions . rc

Figure 9-1 Examples of model extend on cartesian grid (left) and non-cartesian grid (right).
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9.1.2 Non-cartesian grid

A non-cartesian grid is typically used when the model is driven by meteorological data
from WRF or COSMO. In that case it makes sense to use the same grid definition as the
meteorological model. In longitudes/latitudes the domain is usually wider towards the poles
to have grid cells that have equal width in km (figure 9-1, right panel).

In the rcfile, first specify the grid type:

! de f ine g r i d type :
g r i d . type : non−ca r tes ian

The grid definition should then be read from a sample file with the WRF or COSMO meteo.
The settings should specify the sample file name and the name of a variable from which
the grid definition will be read, for example:

! sample f i l e :
g r i d . f i l e . name : / data /WRF/ wrfout d02 2014−01−01 00 :00:00
! sample v a r i a b l e :
g r i d . f i l e . var : var name=HGT

In practice it is often only necessary to run the model on a sub domain of the input data.
The following setting could be used to select this sub domain, or to specify that the full grid
should be read:

! subset [ i1 , i2 , j1 , j 2 ] , negat ives f o r a l l :
! g r i d . f i l e . subset : −999 −999 −999 −999
g r i d . f i l e . subset : 50 110 50 150

9.2 Zooming

Running in zoom modes simply means running the model twice: first for a large domain
and coarse resolution, then for a smaller domain in fine resolution. The later should be
configured to read concentrations from the first run as boundary conditions.

The following steps are usually taken to setup a zoom run.

1. Perform a run on large domain:

• large domain covering the future zoom grid;

• coarse resolution;

• output of 3D concentration fields:

– all relevant tracers; use keyword: ‘all-advected’
– bounding box around zoom region to save disk space (section 15.2.1);
– conc-bound output; conc-bound output generate concentrations + pressure

and height information of grid cells

• remember the run-id and the output directory.

2. Perform the zoom run:

• small domain within the previous domain;

• fine resolution;

• boundary condition; in main .rc file: Load bound-rc file including settings to use
LE-run as boundaries. (lotos-euros-bound-*-le.rc). ‘conc-bound‘ output will be
interpolated to zoom-domain

• parent domain; Domain name of the boundary run

• eventually put out concentrations in the halo cells to check the inheritance of the
boundary conditions, see section 15.2.1.



24 / 65 LOTOS-EUROS User Guide | v2.3.000

Note that the time steps for the zoom run are automatically reduced to match the CFL
(Courant)-criterion.

In the setting of the rc-file the type of run can be given (‘my.run.type‘), the necessary outputs
will be defined by default.

• Bound: run will be used as boundary run; keyword ‘all-advected‘ is used to get all
advected tracers in output (conc-bound files).

• Zoom: run will be used as zoom run; Parent domain should be defined, rc-file includ-
ing LE-settings will be loaded.

• Zoom or Bound plus Zoom; Run is used as both boundary and zoom run (middle
domain in a three-step nested approach).

9.3 Mapping of input data

Input is interpolated or averaged automatically to the required grid; if the model domain
extends beyond the coverage of the input, an error is raised.
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10 Vertical levels

Three different vertical level definitions are supported. Table 10.2 shows selected proper-
ties for the different definitions discussed below.

mixlayer hyblevel metlevel

Table 10.1 Illustration of level definitions.

levels.type mixlayer hyblevel, metlevel
number of layers 4 or more unrestricted
vdiff.kz type msp (default) normal

normal (optional)
adjust process yes no
volumes constant within time step (1 hour) dynamically

Table 10.2 Properties of vertical level definitions.

10.1 Mixed-layer definition

The ’mixed-layer ’ definition is the standard method for the vertical structure in LOTOS-
EUROS. The levels are defined every time step in terms of heights above the surface,
and some of them evolve dynamically with the boundary layer height obtained from the
meteorology (figure 10.1, left panel). Input data will be mapped to this layer definition.

In a standard configuration with 5 layers, the first layer is thin surface layer of 25 m. On this
the second layer is placed with the top at the boundary layer; this is therefore grid cell and
time depended. The third and forth layer are reservoir layers of equal thickness of at least
500 m, with the forth layer having a top at 3500 m above the surface or more if needed
to have the minimal thickness. On top of this the fifth layer is placed with a top at 5000
m or more if needed to have a minimum thickness of 500 m. The minimum thickness is
increased with a factor times the orography of surrounding cells to have somewhat thicker
cells over mountain area’s; by using thicker cells, the minimum time step implied by the
advection is higher which saves run time.

This level type is enabled using:

l e v e l s . type : mix layer

The number of layers to be used is defined with:

l e v e l s . nz : 5

The thickness of the surface layer is defined with:

mix layer . s u r f t o p : 25.0

The mixing layer should be at least as thick as the surface layer, which is defined by a
minimum value for the top above the surface:



26 / 65 LOTOS-EUROS User Guide | v2.3.000

mix layer . mix topmin : 50.0

The fifth and higher layers are defined using lists that define the top above the surface, the
minimum thickness, and the factor to be used in combination with the standard deviation of
the orography. For the 5 layer version the configuration is:

mix layer . top : 3500.0 5000.0
mix layer . dmin : 500.0
mix layer . sdofac : 1.0 0.5

For an 8 layer version the configuration looks like:

mix layer . top : 3500.0 5000.0 6500.0 8000.0 10000.0
mix layer . dmin : 500.0
mix layer . sdofac : 1.0 0.5 0.0 0.0 0.0

A final configuration is the definition of the thickness of the aloft layer that will hold the
top-boundary concentrations:

mix layer . d a l o f t : 1000.0

With this vertical scheme, one of the model operators is an ’adjust’ step that changes the
layer heights towards a new boundary layer height. This is applied at the start of every time
step. During the time step, the grid cell heights (and thus cell volumes) are kept constant.

For diffusion between two layers two options are available to compute diffusion coefficients
Kz at the layer interfaces. The first is the ’msp’ method that has been used traditionally,
which adjusts the Kz values for differences in layer thickness around the interface; this is
enabled with:

v d i f f . kz type : msp

Alternatively also the ’normal’ method could be enabled that is used by the other level
definitions.

10.2 Hybride layer definition

A hybride-sigma-pressure scheme defines vertical layers using pressure boundaries that
follow the surface pressure at the lower levels, and have fixed pressure boundaries at the
top. The layers therefore follow the orography near the surface, which evolves slowly to lay-
ers at fixed pressure higher up (figure 10.1, middle panel). This scheme is for example used
by the ECMWF meteorological model, and is therefore useful if LOTOS-EUROS is driven
by this data. Input data will be mapped to the chosen layer definition anyway, regardless
whether this is also a (different) hybride definition, or something else.

At every time step, the the pressures at a layer interface ar

p(i, j, k, t) = a(k) + b(k) ps(i, j, t) (10.1)

In here, (i, j) denotes the horizontal cell indices, k the layer interface index, and t the
time. The interface coefficients a and b define for each layer which part fraction of the
pressure is constant and which fraction depends on the surface pressure ps that is part of
the meteorological input.

The hybride level definition is enabled using:

l e v e l s . type : hyb leve l

The number of layers to be used is then defined with:

l e v e l s . nz : 12

The rest of the atmoshpere (above the layers simulated by the model) is filled with concen-
trations from the global boundary conditions; these are used for top boundary conditions,
and to simualte satellite observations. Specify the total number of layers with:
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l e v e l s . nz top : 18

NOTE: the first top layer above the model layers should not be too thick! This will be filled
with concentrations from the global boundary conditions, averaged over the layer. If the
layer is too thick, the ozon concentrations will include part of the stratospheric ozone layer,
and the inflow of ozone from the top will be too high!

The hybride coefficients a and b should be provided in a text file, for which an example is
provided with the model distribution:

hyb leve l . c o e f f i c i e n t s : data / hyb leve l−137 CL42 ml12p06

The number of coefficients in the file might exceed the requested number; the model will
simply read the first values that define the interfaces from surface to model top.

In this scheme, the layers are first defined in terms of pressure boundaries, which then
implies the heights above the surface (using temperature, humidity, and orography). The
cell volumes change dynamically but do not follow the evolution of the boundary layer, and
therefore no ’adjust’ process is needed as used for the ’mixlayer’ scheme.

Diffusion coefficients between layer interfaces should be normal Kz values, thus not ad-
justed for extreme differences in layer thickness:

v d i f f . kz type : normal

10.3 Meteo level definition

With this method, the model will copy a level definition from a set of meteorological data.
Depending on the data this definition could define layer interfaces as pressures or heights
above the surface. The model data settings as described in chapter 11 should define the
correct settings to read and process the data. This method is useful to keep LOTOS-
EUROS as close to a meteorological model as possible. The ’meteo-level ’ definition is
therefore a generalization of the ’hybride-level ’ method, which does not necessarily require
a surface pressure and hybride coefficients but could use other level definitions too (figure
10.1, right panel).

The meteo level definition is enabled using:

l e v e l s . type : met leve l

The layers to be used are defined with with two settings: the number of layers, and for each
of these, the number of original layers that is coarsed in them:

! number o f l aye rs t h a t should be used :
l e v e l s . nz : 12
! l aye r combination , empty f o r no combinat ion :
met leve l . combine : 1 1 1 2 2 2 2 2 2 2 2 2

The rest of the atmoshpere (above the layers simulated by the model) is filled with con-
centrations from the global boundary conditions; these are used for top boundary condi-
tions, and to simualte satellite observations. Specify the total number of layers, and how to
coarsen them from the meteo layers using:

! t o t a l number o f l aye rs i n c l u d i n g ” top ”
l e v e l s . nz top : 19
! l aye r combination , empty f o r no combinat ion :
met leve l . combine top : 1 1 1 2 2 2 2 2 2 2 2 2 1 2 3 3 4 4 4

NOTE: the first top layer above the model layers should not be too thick! This will be filled
with concentrations from the global boundary conditions, averaged over the layer. If the
layer is too thick, the ozon concentrations will include part of the stratospheric ozone layer,
and the inflow of ozone from the top will be too high!. So first top-layer should not be a
combination of layers but consist of only 1 single layer
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Using a layer definition from a meteo model requires different settings depending on the
originating model. An example of such a specific configuration is provided as:

rc / lo tos−euros−data−meteo−cosmo−met leve l . rc
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11 Meterological data

11.1 Introduction

The LOTOS-EUROS model uses off-line meteorology. Meteorological fields are read from
files with time series of data at for example 3 hourly resolution.

The storage and reading of meteorological fields has been revised completely for version
2.0. The new implementation is based on general routines that are able to handle data files
in NetCDF format following common conventions.

Previous versions of the model also supported meteorological data from the RACMO re-
gional climate model and the WRF meteorological model. The new generic interface of the
model will be extended to support data files produced by these models too.

11.2 Data definition in model

The meteorological data in LOTOS-EUROS is allocated dynamically, and only if actually
needed. The dynamic allocation is part of generic facility in the model that is intended to
hold all gridded variables, but as first step holds the meteorological variables.

Definition of the meteorological variables is done in the settings file(s), in particular:

l o tos−euros−data . rc

The header of the files contains details of the possible settings, here we describe the main
steps only. The first definition is a (long) list of all data variables supported by the model.
This list contains for example a keyword to describe the 2m surface temperature:

data . vars : . . . t s u r f . . .

For each of the variables, a detailed description should be provided in the form of specific
settings lines. For the surface temperature ’tsurf’ this is for example:

! de f ine :
data . t s u r f . long name : sur face temperature
data . t s u r f . u n i t s : K
data . t s u r f . range : 0.0 I n f
data . t s u r f . g r i d t ype : c e l l
data . t s u r f . l ev type : s f c
data . t s u r f . datatype : i n s t a n t f i e l d s e r i e s
data . t s u r f . i npu t : meteo . t s u r f

The detailed settings contain (see also the header of the settings file):

• a descriptive longname, used when the variable is put out;

• the units;

• the range of allowed values, used to truncate the variable to realistic values (sometime
necessary to remove tiny negative values for example);

• the horizontal grid on which the variable is defined;

• the vertical levels on which the variable is defined;

• the datatype (Fortran class), which is mainly related to the temporal behavior (see
section 11.6);

• a keyword that describes the input mechanism in case the variable should be read
from file(s) (see section 11.7); otherwise, a definition of how to compute the field
should be present (see section 11.8).
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11.3 Accessing a variable in the model

In the model code, the variables that are defined in the settings are available from a module:
use LE Data

The array that holds the variable values should be accessed using a pointer. Use the
following code to access the above defined surface temperature:

use LE Data only : LE Data GetPointer

! t h i s w i l l po i n t to the sur face temperature :
real , pointer : : t s u r f ( : , : , : ) ! ( lon , l a t , 1 )

! assign p o i n t e r to sur face temperature ,
! check i f the u n i t s are as expected :
c a l l LE Data GetPointer ( ’ t s u r f ’ , t s u r f , status , check un i t s = ’K ’ )
IF NOTOK RETURN( status =1)

! show value i n c e l l ( 3 ,4 ) :
pr in t * , ’ example o f sur face temperature : ’ , t s u r f (3 ,4 ,1 )

Note that:

• the variables are always 3D, for surface fields the last dimension has size 1;

• a check on the units can be used to make sure that the units are as expected (thus
degrees Kelvin and not degrees Celcius);

• the call to the ’GetPointer’ routine will return with an error status if the requested
variable was not defined in the settings, or when it was not actually enabled (see
section 11.4).

11.4 Enabling a variable in the model

Before a variable could be used, it should not only be defined in the settings, but also
actually enabled. By enabling a variable it will be allocated and filled with the proper values
at every time step.

Enabling is typically done in the initialization routine of a module, where all variables should
be enabled that are used in the module. If a variable is not enabled, for example because
some processes in the model are not used in a particular configuration, it will not be allo-
cated (which saves memory) and will not be read or computed (saves run time).

To enable a variable, use the following lines of code:

use LE Data , only : LE Data Enable

! enable sur face temperature :
c a l l LE Data Enable ( ’ t s u r f ’ , status )
IF NOTOK RETURN( status =1)

11.5 Grid types

The following grid types are supported:

• cell

Values valid for the entire cell; this is the most common type. The shape of this grid
is ’(nlon,nlat)’.
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• corner

Values are defined on the corners of cells. This is used to setup the advective fluxes
through the cell edges. The shape of this grid is ’(nlon+1,nlat+1)’.

• u-edge, v-edge
Used for fluxes through the west and east sides (’u’), or through the north and south
sides (’v’). The shape of this grid is ’(nlon+1,nlat)’ or ’(nlon,nlat+1)’ respectively.

When fields are read from input files (section 11.7), a re-mapping to the target grid is
performed automatically if possible. Current implementations can handle longitude-latitude
grids (eventually with irregular spacing), and to some extend the so-called reduced grids
which have a varying number of cells per latitude band.

11.6 Data types

The variable definition contains a setting for the datatype:

data . t s u r f . datatype : i n s t a n t f i e l d s e r i e s

The following data types are possible:

• field

This type is used for a constant field, thus without any change in time, for example
the grid cell area.

• instant field

An instant field is valid for specific instant time. This type is typically used for fields
that are computed from other instant fields, thus not read from a time series in input
files.

• instant field series

Use this type for a variable that is derived from a time series, typically by interpolation
in time between the fields in the series. For example the 2m surface temperature is
of this type.

• constant field

In this context a ’constant’ field means ’constant during a time interval’, for example
during 3 hours. A time interval for which the variable is valid is associated with it. This
type is typically used for fields that are computed from other constant fields, thus not
read directly from file.

• constant field series

Use this type to read ’constant’ fields from a time series in a file. For example the
amount of precipitation is of this type, since in meteorological data is available as the
total amount of water that has fallen down during some time interval.
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11.7 Input descriptions

If a variable should be read from input files, a configuration of the following form should be
present:

data . t s u r f . i npu t : meteo . t s u r f

This setting describes that the details of how the field should be read are defined with
settings starting with ’meteo.tsurf’.

For the current model version, meteo files were created from ECMWF data, see section
19.2 for creation scripts. Examples of input descriptions for these files are found in the
settings file:

l o tos−euros−meteo−ecmwf . rc

Here we show the general idea of the settings; for the specific settings we refer to the actual
rc file.

The input description should first contain an ’input’ value that defines time intervals and
descriptions:

meteo . t s u r f . i npu t : 2012−01−01 00:00 , 2012−12−31 23:59 , fmt1 . t s u r f | \
2013−01−01 00:00 , 2020−12−31 23:59 , fmt2 . t s u r f

That is, a list of time intervals and description keys separated by a vertical line (’| ’) should
be provided. Given a requested time, the input will be read according to the description
associated with the interval that encloses the time value. This feature is used to handle
changes in for example file formats and resolutions over time, which often occure in opera-
tional meteo models.

The description key refers to settings that are used to define the file and variable name. For
example for the surface temperature these settings could have the form:

fmt1 . t s u r f . name : / data /ECMWF/ s fc /%{yyyy } / t2m %{yyyymmdd} 3h . nc
fmt1 . t s u r f . var : long name=2 metre temperature ; var name=t2m

The ’name’ setting provides a template for the file name in which the variable should be
found; the keywords ’%{yyyy}’ etc. are replaced by actual time values. The ’var’ setting
identifies the file variable, and consists of a ’;’ seperate list of ’key=value’ pairs. The ’key’
could be ’long name’ or ’standard name’ in this case it refers to a variable attribute in the
netcdf file; a ’var name’ refers to the variable name itself. A ’standard name’ is prefered
since this might be less subject to changes than a long name or the variable name. The
first ’key=value’ pair that identifies a variable in the file is used.

For instant fields (valid for a single time step), also the temporal interpolation method should
be defined. Here we define that the expected temporal resolution in the files is 3-hourly,
and that that requested fields should be interpolated linearly in time:

meteo . t s u r f . t i n t e r p : i n t e r p o l a t i o n = l i n e a r ; step =3; u n i t s =hour

11.8 Computing variables

If a meteo variable should not be read from input files but computed from other variables, the
definition should have a ’call’ description. For example, the following description is used
to define a variable ’srh’ with relative humidity at the surface, which should be computed
from the 2m surface temperature (’tsurf’) and the 2m dewpoint temperature (’dsurf’):

data . srh . long name : sur face r e l a t i v e humid i ty
data . srh . u n i t s : %
data . srh . range : 0.0 100.0
data . srh . g r i d t ype : c e l l
data . srh . l ev type : s f c
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data . srh . datatype : i n s t a n t f i e l d
data . srh . c a l l : Relat iveHumidi tyTD ( t s u r f , dsu r f )

The ’call’ description has the form of a function call, with as arguments a comma-seperated
list of source variable names. The function name (’RelativeHumidityTD’) is linked to an
actual function call in subroutine:

Var iab les Setup ( module LE Data Var iab les )

The arguments of the actual function are usually the name of the target variable (’srh’) and
a list with the names of the argument variables (’tsurf’,’dsurf’).

If a variable with a ’call’ definition is initialized, it is checked if all arguments are names of
variables. When the variable is enabled, the arguments are enabled too.

11.9 Example: 3D field

The following example show the definition of a 3D field, in this case temperature. Such a
variable combines most of features described in this chapter.

The input time series of temperature is here assumed to have a 3 hourly resolution, and
defined on pressure levels. At every time step the temperature on model levels should
be computed from a temporal interpolation between the time steps in the input, and a
vertical remapping to the model levels (horizontal re-mapping is done at reading from input
as described in section 11.5). For the vertical re-mapping it is necessary to have the level
definition of the input fields and the model; here we apply an air-mass weighted re-mapping
that requires level definitions in term of half-level pressures.

The name of the temperature variable in the model will be ’t’. This will be computed from a
variable ’t met’ which holds the temperature field at the levels of the meteorological model
(as read from the input). For the re-mapping also half-level pressures for the model and the
meteorological input are needed. Therefore, in total 4 variables are needed in the model:

data . vars : . . . hp met t met hp t . . .

The temperature field is defined with:

data . t . long name : temperature
data . t . u n i t s : K
data . t . range : 0.0 I n f
data . t . g r i d t ype : c e l l
data . t . l ev type : l e v e l s
data . t . datatype : i n s t a n t f i e l d
data . t . c a l l : MassAverage ( hp met , t met , hp )

The variable is defined on grid cells and model levels, and is an instant field valid for a
single time step. At every time step, the values should be computed from a mass-weighted
average from the temperature at the meteorological levels, which also requires half-level
pressure fields.

The temperature at meteorological levels is defined with:

data . t met . long name : temperature
data . t met . u n i t s : K
data . t met . range : 0.0 I n f
data . t met . g r i d t ype : c e l l
data . t met . l ev type : meteo leve ls
data . t met . datatype : i n s t a n t f i e l d s e r i e s
data . t met . i npu t : meteo . t

The data type is that of an instant series, since the field should be interpolated in time from
a time series of input fields. The input is described by rcfile keys that start with ’meteo.t’.
The level type ’meteo levels’ forces the model to maintain the original levels as read from
the input files.
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The input description of the temperature fields contains a single file format for all times, and
tells the model that the input time resolution is 3-hourly and that linear interpolation should
be applied in between:

meteo . t . i npu t : 2012−01−01 00:00 , 2020−01−01 00:00 , e c f i l e . t
meteo . t . t i n t e r p : i n t e r p o l a t i o n = l i n e a r ; step =3; u n i t s =hour

The file description looks like (see ’lotos-euros-meteo-ecwmwf.rc’ for the exact form):

e c f i l e . t . name : / data / ml−t ropo20 / t %{yyyymmdd} 3h . nc
e c f i l e . t . var : long name=Temperature

For the definition of the half-level pressure fields that are used for the mass-averaing we
refer to the settings in ’lotos-euros-data.rc’.
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12 Boundary condition data

12.1 Introduction

Which boundary conditions should be read into the model is defined by a list of keywords:

l e . bound . types : c l im−i sak cl im−const c l im−logan data

Each of the keywords defines a data set from which boundary conditions should be read.
The tracers provided differ per set. If two sets contain data for the same tracer, the data
corresponding to a keyword later in the list will replace the data read before.

The implementation and configuration differs per set. Each of the sets has an own module
in the source code, for example:

le bound cl im emep . F90
le bound c l im i sak . F90
le bound c l im logan . F90
le bound data . F90

:

The most general set is ’data’. The configuration of this set allows input from time series of
netCDF files. In future all boundary conditions will be read through this configuration, but
for the momoment it is not used yet for ’older’ climatological boundary conditions. The most
important boundary conditions are those obtained from a global model (typically 3 hourly
3D fields), or a boundary run from LE (1 hourly resolution 3D fields) and these are all read
using the ’data’ configuration.
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12.2 Configuration of ’data’ boundary condition set

The processing of the ’data’ boundary conditions follows a number of stages, and is ilus-
trated in Figure 12-1.

• At the bottom, the original boundary condition data (blue) is obtained from for example
a global model The time series could be irregular by resolution and format.

• This data is read from the files and interpolated in time (green). Typically the code will
store two original fields (for example valid for 00:00 and 03:00) and interpolate this
lineary to a target time (00:30). At this stage, the data is also regridded to the model
resolution, but the original levels are still kept.

• In the next stage, also vertical regridding is applied (orange). This stage is seperate
because the vertical structure of the model is time dependend, and vertical regridding
could therefore not be done directly after reading.

• In the final stage the actuall boundary concentration fields (red) are formed. Even-
tually those concentrations are formed from a linear combination of original fields,
for example a weight sum of dust modes that together form the ’fine’ fraction in the
model.

The next sections illustrate step by step the configuration of these stages.

Figure 12-1 Data flow of boundary conditions.
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12.2.1 Configuration for model variables

Figure 12-2 shows the toplevel configuration of the boundary condition data. For each of
the tracers in the model, the configuration should have a definition of how to form these
concentrations from variables present in the boundary condition data. The example shows
for example that the fine dust fraction should use a linear combination of the original dust
modes.

Figure 12-2 Top level configuration of boundary condition data.
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12.2.2 Configuration of boundary condition variables

Figure 12-3 shows the configuration of the boundary condition variables. Each of these
variables are stored in the ’LE Data’ structures that are also used for the meteorological
data; see chapter 11 for a description.

In the example, the variable ’cams nrt dust f’ holds the fine dust mode read from the ’cams
nrt’ data set. As all boundary condition variables it holds concentrations on the model grid
cells and model levels. The vertical regridding is defined using a ’ call ’ description that tells
the model to use an average over the original layers. This requires variables holding the
original half level pressures and concentrations; also these should be present as ’LE Data’
variables. Here we simply added a double underscore to the names to define variables on
the original levels:

cams nr t hp
c a m s n r t d u s t f

Figure 12-3 Configuration of regridded boundary condition variables.
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12.2.3 Configuration of boundary condition variables on original levels

Figure 12-4 shows the configuration of the boundary condition variables on the original
levels. Also these are configured as ’LE Data’ variables. In the vertical these variables are
defined on input levels. The variables should be read from input files; an ’input’ keyword is
used for the configuration of a series of input files.

Figure 12-4 Configuration of boundary condition variables on original levels.

12.2.4 Configuration of boundary condition files

The final configuration is the description of the input file names and variables to be read.
Figure 12-5 shows a part of this configuration for the dust variable.

Figure 12-5 Configuration of boundary condition files and variables.
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13 Generation of chemistry code

13.1 Overview

With the number of tracers growing throughout the years it became more and more difficult
to manage the source files solving the chemistry. In addition, there was no easy way to
quickly enable or disable some tracers or chemical reactions without having to change the
source code.

It was therefore decided to let some of the tracer and chemistry related files be generated
by the scripts, based on settings in the rcfile. The scripts used to generate the source files
start with the name ’genes’ (GENErate Sources), and this name is also used in the settings
keywords.

The generated files are:

• ’ le indices . inc’, an include file with index parameters, names, units, and other settings
for all tracers;

• ’le chem work.F90’, a module with routines that fill the reaction rates and perform a
single step of the iteration step in used by the chemistry solver.

Default versions of the generated source files are included in the base source. Editing won’t
have any effect; instead change the rcfile settings or the tables that were used to generate
them, as explained below.

The new source files are generated in the build directory. For debugging it might be useful
to take a look at the generated files after creation; this is facilitated by the rcfile setting:

genes . show .command : ned i t ${genes . f i l e s } &

In this case, the new files are loaded into the ’nedit’ editor; the ampersand ensures that the
editor keeps running as background process while the rest of the model setup continues.

13.2 Tracer and chemistry properties

An important part of the configuration is done through so-called ’properties’. Table 13.1
shows some of the the currently supported properties; their use will be explained later on.
A list with supported properties is maintained in the expert rcfile, which is used to check the
settings made by the user; see the expert rcfile for a complete list of all properties.

To select the tracers and reactions that should be included in a simulation, a list with prop-
erties should be specified in the rcfile. Default selection in the main rc file is:

genes . prop . se lec ted : cbm4 ppm ec pom s ia seasa l t dust accum b iasco r r

This is used to select the appropriate lines from the tables described below.
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cbm4 tracers/reactions of CBM4 scheme
sulphur sulphur-only scheme (SO2 and SO4a, OH read in)
methane methane-only scheme (CH4, OH read in)
co2 CO2 tracer
sf6 SF6 tracer
nmvoc non-methane volotile organic carbon
radical radical
ppm primary particulate matter
ec elementary carbon
pom primary organic matter
sia secondary inorganic aerosols
seasalt sodium aerosols representing seasalt
dust dust aerosols
m7 M7 aerosol scheme
vbs vbs cg vbs soa for secondary organic aerosol modelling
basecation base-cat-ion aerosols
hm heavy metals
accum accumulated species
biascorr bias corrected species
aerosol aerosol tracer
fine mode fine mode aerosol
coarse mode coarse mode aerosol
all modes total aerosol collecting all size modes
in-cloud used to select implicit in-cloud chemistry reactions

Table 13.1 Tracer and chemistry properties.
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13.3 Tracer table

The core of the tracer selection is a table with all supported tracers. The default table is
available as:

base /000 / data / t r a c e r s . csv

The content looks like:

name , d e s c r i p t i o n , un i t s , formula , p r o p e r t i e s
NO , N i t r i c oxide , ppb , N + O , cbm4
O3 , Ozone , ppb , O 3 , cbm4
ALD , Aldehyde , ppb , C 2 + R, cbm4 nmvoc
PPM f , prim . pa r t . mat . f i n e mode, ug /m3, R , ppm aeroso l f ine mode
:

For each supported tracer, the following values should be set:

• name Short name, used in index variables i O3 etc.

• description Longer description, only used in comments in generated source files.

• units Units of the tracer in the model; usually ’ppb’ for gasses, and ’ug/m3’ for aerosols.

• formula Chemical formula (if possible). For some applications (labeling) it is useful to
have at least the number of C, N, and S atoms in a molecule; for the remainder, use
the symbol ’R’ .

• properties List with all tracer properties (table 13.1) that are appied to this tracer.

To be enabled in the simulation, a tracer should have at least one of the selected properties.
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13.4 Reaction table

Chemical reactions are also specified in a text file. The default table is available as:

base /000 / data / reac t i ons . csv

The content looks like:

l abe l , reac tan ts , products , ra te expression , p r o p e r t i e s
R1 , NO2 , NO + O3 , 1.0 x <NO2 SAPRC99> , cbm4
R3 , O3+NO , NO2 , 2.64 @ 1450 , cbm4
:
RH1f , SO4a f + N2O5, SO4a f + 2*HNO3, r k h e t ( ireac N2O5 NH4HSO4a f ) , cbm4 s ia
:

For each reaction, the following values are specified:

• label: A short label for the reaction, used in parameter names.

• reactions: Tracers reacting with each other; tracer names following the tracer table.

• products: Tracer products.

• rate expression: Description of the reaction rate, see also Appendix A in the Refer-
ence Guide. See the comment in the top of the reaction table for how the expression
is expanded. Some reaction rates are set by a special routine in the code, for example
for the heterogeneous reaction ’RH1f’ in the example lines above.

• properties: List with all tracer properties (table 13.1) that that should be present to
have this reaction enabled.

Reactions are only enabled if ALL of it’s properties are selected in the rcfile. Thus, reaction
’RH1f’ of the example above is only enabled if both ’cbm4’ and ’sia’ tracers are selected.

13.5 Specification of table files

The name of the tables file should be specified in the rcfile. The default setting in the rcfile
is:

genes . t r a c e r s . f i l e : . . / data / t r a c e r s . csv
genes . reac t i ons . f i l e : . . / data / reac t i ons . csv

In this case, the tables are found in the ’data’ sub-directory next to the ’src’ sub-directory in
the build directory, thus:

<rund i r >/ b u i l d / data /

These table files are copied from the base directory, and eventually replaced by project
specific versions. Therefore, to test a new table, simply put it in the ’data’ sub-directory of a
project directory. Alternatively, specify an absolute path in the expert rcfile settings.

13.6 Tracer indices and arrays

The information on the selected tracers is used to create the file ’ le indices . inc’. This file is
included into ’ le indices .F90’, which provides the module ’Indices’. Through this module, the
user can access the generated entities; see the comment in top of ’ le incdices .F90’ for their
definition.
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14 Labeling

14.1 rc-file

To use the labeling methode switch labeling flag to True
!
my. w i th . l a b e l i n g : True

Define number of labels (default labels are added automatically)
!
l a b e l s . n labe l : 2

Define which tracer to be labelled. Note that in a group, all tracers should be labelled
!
l a b e l s . l a b e l l e d . specs : ${N t racers } ${S t race rs } ${ u n r e a c t i v e t r a c e r s ...

...}

14.2 Code

In module ’SA Labeling.F90’, the labels are defined hardcoded. Subroutine ’SA Label Definition...
...’ is use for this.

Step 1:

Define the names of the labels and define short names with maximum of 10 characters to
get proper output for Grads-ctl files.
Note number of defined labels should be equal to number defined in rc-file. In the example,
labels are defined for Countries (Netherlands and abroad). Also example lines for emission-
sector labeling are provided.

!
SA Label Names ( 1 ) = ’NLD’
SA Label Names ( 2 ) = ’ Abroad ’
! SA Label Names ( . . ) = ’ . . ’

Step 2:

Match incoming emissions to the label numbers. Each incoming emission must be attached
to a label

Example for countries (with label on Netherlands and Abroad)
i f ( i c o u n t r y == −999 ) then

! undef ined coun t r i es
d e f l a b e l = 2

else i f ( Emis count r ies ( i s e t )%emis country names ( i c o u n t r y ) == ’NLD’ ) ...
... then

d e f l a b e l = 1
else

d e f l a b e l = 2
end i f

Example for sectors (with label on Industry and others)

i f ( Emis Sectors ( i s e t )%emis sector names ( i c a t ) == ’ Indus t ry ’ ) then
d e f l a b e l = 1

else
d e f l a b e l = 2

end i f
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14.3 Output

From the labeling module, extra outputfiles are generated. (labelled-conc-sfc, labelled-
cond-3d). Properties of those files are identical to matching concentration files described in
Section 15, with an extra dimension ’label’ to display the concentration resulting from each
predefined label.
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15 Model output

15.1 Output frequency

The user should specify the ’output’ time-step in the rcfile:

! ou tput t ime step i n minutes :
t imestep . output : 60

A typical value is 1 hour. The model will arrive at every multiple of this output-time-step and
put out simulated values.

15.2 Gridded output

The output of gridded fields is controlled by the rcfile. The supported output types are
described below. It is possible to put out files of the same type but with different properties,
for example files with concentration fields at the surface for many tracers, and files with 3D
fields for some selected tracers only.

The gridded output is written to NetCDF files. By default the files are structured following
the CF-conventions. GrADS description files are added for visualization (see section 18.2).

15.2.1 Concentration fields

For output of concentration fields the following properties could be set:

• which tracers to be put out:

– model tracers;
– accumulated tracers: total PM10, total carbon, etc; see indices.F90 for the sup-

ported accumulation;
– bias corrected tracers;
– all-advected; all tracers which are advected in the model, used for nesting ap-

proach

• vertical axis:

– model levels, including the concentration at 2.5m (which is the measurement
height, denoted as surface concentrations) and the top boundary layer;

– heights relative to orography;
– elevations relative to sea-level;

• whether to put out the cell height too;

• temporal resolution (typically fields are put out every hour);

• collection per file: either daily or instantaneous;

• horizontal coverage: by default the whole grid, but optionally:

– bounding box to limit the horizontal area, for example to save storage space
while producing boundary conditions for a zoom run;

– halo cells (boundary conditions values);

Template settings for output files with surface concentrations (’conc−sfc’) ,3D fields at model
levels (’conc−3d’) ,and 3D fields used as boundary conditions (’conc−bound’) are available
in the output rcfile.
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15.2.2 Tracer total columns

Total columns could be put out for comparison with satellite observations. Note that this
only includes the model layers now; the top boundary is not included yet, since usually
there is no idea about its height. The following properties could be set:

• which tracers to be put out (normal or accumulated);

• temporal resolution (typically fields are put out every hour);

• collection per file: either daily or instantaneous.

15.2.3 AOD columns

The Atmospheric-Optical-Depth is computed from the tracer concentrations and put out as
columns.

15.2.4 Model data fields

For output of various other model data fields (e.g. meteorological fields), the following
properties could be set:

• which fields to be put out: meteo variables, stability fields, . . .

• vertical axis:

– model levels, including the surface level and the top boundary layer which are
for most fields a copy of the nearby model layer;

– heights relative to orography;

– elevations relative to sea-level;

• temporal resolution (typically fields are put out every hour);

• collection per file: either daily or instantaneous.

Template settings for output files with surface data (’meteo−2d’) and with 3D fields at model
levels (’meteo−3d’) are available in the output rcfile.

15.2.5 Emission fields

The total emission for a certain tracer (or accumulated tracer) could be put at at regular
times. The array that is put is ’emis a’ which contains for each tracer the total emission
during the current (next) time step, independent of the source (anthropogenic, biogenic,
sea-spray, etc). The following properties could be set:

• for which tracers the emissions should be put out, including accumulated tracers;

• vertical axis: either model layers or the total per grid cell;

• temporal resolution (typically fields are put out every hour);

• collection per file: either daily or instantaneous.
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15.2.6 Dry and wet deposition

The dry- and/or wet-deposition budgets per output time step could be put out with the the
following properties:

• for which tracers the deposition should be put out, including accumulated tracers;

• vertical axis: either model layers or the total per grid cell;

• temporal resolution (typically fields are put out every hour);

• collection per file: either daily or instantaneous.

15.2.7 Deposition parameters

Deposition variable such as resistances and deposition velocities could be put out with the
following properties:

• for which tracers the variables should be put out (if tracer dependent);

• the landuse classes for which variables are valid;

• vertical height, for example needed for dry deposition velocities.

15.2.8 Daily budgets

The daily budgets are updated every time step and are put out at midnight. The following
budgets could be put out:

• dry deposition flux of SOx, NOx, or NHx;

• wet deposition flux of SOx, NOx, or NHx;

• ozone dry deposition flux per landuse;

• ozone daily maximum;

• average NH3 concentration in soil.

15.3 Satellite validation output

For special purposes also the following fields could be produced:

• Simulation of OMI NO2 columns.

• Simulation of MODIS AOD columns.

The horizontal model grid is used to sample the satellite pixels. This output therefore re-
quires that information on the satellite pixels is available.

15.4 Observation simulation

The standard method to produce simulations of concentrations at observation sites is to
run the DIADEM post processor (section 18.1).
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An alternative is to use the MAORI (Model And Output Routine Interface) routines. The
MAORI interface is configured via the rcfile by specification of a table file with station lo-
cation and settings to define the simulated tracers etc. This is mainly used in the Kalman
Filter context to simulate state values at observation sites; in the default model the code is
present, but the use is not fully supported yet.

15.5 Emission summary

A summary of the emissions is written automatically to the output directory. Currently this
is only supported for anthropogenic emissions read from files in TNO format. Since these
are year-dependent, the summary is written for every year that the simulation covers. A
summary consists of four comma-separated-value file (plain text): a list of the emission cat-
egories, a list with country codes and names, a table with total emissions for a component
per country, and similar per country and emission category. The file is useful for verification
of the emission input.
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16 Restarting a run

When a run has crashed at some point due to some problem, the restart file can be used
to restart the simulation at the day where it ended, without the need for spin-up. To use this
option, change the date of the simulation in the main rc-file to the date of the last restart
file. Thus, when the last restart file is:

LE mysimulat ion state 20120823 0000 . nc

then the day and time for the simulation should be:

2012−08−23 00:00:00

Enable startup from a restart file by the setting:

l e . r e s t a r t : T

and make sure that the path and runid of the restart file are defined correctly.

It is safer but not mandatory to move the existing output directory to a different path (e.g.
output2). Be aware that the .ctl files for GRADS (see section 18.2) are re-initiated so
that they start now with the time stamp of the restart. This is easily modified in a text editor
when one recombines the data from the original simulation and the restarted simulation.
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17 Parallelization

LOTOS-EUROS has two options to employ multiple processors: domain decomposition
using MPI, and OpenMP. These two do not exclude each other, but in practice the do-
main decomposition is preferred because it scales better when increasing the number of
processors.

When running with MPI (domain decomposition) it is also possible to assign dedicated
processor to copy input files from an archive (slow) to a local drive (fast); on some systems,
this could strongly decrease the run time.

17.1 Domain decomposition

With domain decomposition, the model grid is divided into a number of sub-domains, and
each sub-domain is assigned to another processor (figure 17-1). The processors use the
MPI library to communicate between the domains, in particular to fill the boundary arrays
using simulated concentrations from other processors.

Figure 17-1 Illustration of domain decomposition.

17.1.1 Configuration

To run with domain decomposition, enable the MPI flag, specify the number of MPI tasks
(sub domains), and specify how to decompose into sub-domains in x and y direction:

! enable MPI ( True | False ) ?
par . mpi : True

! number o f mpi tasks :
par . ntask : 4

! decomposit ion :
domains . x : 2
domains . y : 2

17.1.2 MPI compiler

The MPI library that is used for communication is linked with the model by using a special
compiler wrapper around the native compiler. Popular MPI libraries are OpenMPI and
MPICH, but also the Intel compiler suite usually comes with an MPI installation.
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The name of the compiler wrapper that is used by the MPI library should be specified in the
machine settings:

! compi ler wrappers f o r MPI :
mpi . compi ler . f c : m p i f o r t

17.1.3 Logging and error messages

Each sub domain writes standard output to a seperate log file in the output directory. The
domains are numbered sequentially starting from zero, and this number is part of the per-
sub-domain log file name:

output / le−log−d00 . out
le−log−d01 . out

:

When an error occurs, it always happens first in just one of the subdomains. The error
message is therefore in just one of the log files only, since the processes handling the other
sub domains are simply terminated. To see which processor received the error, check the
content of the error file in the run directory:

−−−[ l o tos−euros run . e r r]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPI ABORT was invoked on rank 3 i n communicator MPI COMM WORLD
wi th errorcode 1.
. . .

In this example, the error was detected on processor 3.

17.1.4 Comparing run times

The DIADEM post-processor (section 18.1) could be used to visualize run times and speed
up for different numbers of subdomains. Figure 17-2 shows the result for an operational
configuration with 400x700 grid cells. A good speedup is achieved for all process even
with a large number of subdomains. Even the input receives some speedup since this
also includes the regridding which becomes a small task for a processor when the domain
becomes smaller.

17.2 I/O task

Reading input files (meteo, boundaries) could take a lot of time in case the file system is
rather slow. On computing servers there is often a small but very fast disk available directly
on the node, for example an SSD storage. When running with MPI (domain decomposition)
it is possible to assign an extra processor to copy input files from an archive (slow) to the
local drive (fast), which could strongly decrease the run time.

Figure 17-3 illustrates the allocation of processors to the model domains and to the i/o task.
The root domain asks the i/o processor to:

• check if selected input data for today is already available on the fast disk (here /tmp),
and if not, copy it from the archive;

• copy the data from the archive for tomorrow;

• remove the data from yesterday from the fast disk, otherwise the fast disk might run
out of space.
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The copy and clean-up actions are performed by a script that is called from the i/o task.
The script will install the input data for tomorrow on the fast disk, while the model is still
simulating today; when the model arrives at tomorrow, the input data is already fast acces-
sible.

To enable the i/o task, enable the following flag in the top-level settings:

! c a l l i n s t a l l a t i o n s c r i p t every day?
l e . i o . apply : T

Using this flag, the machine specific settings should ensure that a job allocates an extra pro-
cessor, such that the total number of MPI tasks is one more than the number of requested
model sub-domains. For the TNO/HPC3 settings this is already configured.

The expert settings have configurations to ensure that the required input data for a standard
run (meteo, boundary conditions, fire emissions) are installed on the fast disk. Here we
shortly describe the most important settings that might require fine tuning in case of a
non-standard simulations. The data sets to be copied temporary to the fast storage are
identified by a list of keywords:

! l i s t o f data sets to be i n s t a l l e d :
l e . i o . i n s t a l l . se ts : meteo gfas mc−bounds

In case of zoom run, also the boundary output from the outer simulation should be copied:

Figure 17-2 Time spent on different processes using domain decomposition with increasing
numbers of subdomains.

Figure 17-3 Allocation of processors for model domains and dedicated I/O task.
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! l i s t o f data sets to be i n s t a l l e d f o r zoom run :
l e . i o . i n s t a l l . se ts : meteo gfas mc−bounds le−bounds

For each of these datasets, define where to copy the data from (the archive) and where
to copy it to; the values are take from keys that should be defined in the machine specific
settings:

! i n s t a l l a t i o n d i r e c t o r y ; empty f o r cu r ren t :
l e . i o . i n s t a l l . meteo . d i r : ${my. l e i p . d i r }
! a rch ive path w i th f i l e s to be i n s t a l l e d :
l e . i o . i n s t a l l . meteo . arch : ${my. l e i p . arch}

Then provide a list of files that should be copied; for files including a time stamp the names
should include templates for year/month/day/etc. For the meteo files this looks like:

! f i l e s to be i n s t a l l e d :
l e . i o . i n s t a l l . meteo . f i l e s : ECMWF/ od / i f s /0001/ an / s f c / F1280 / 0 0 0 0 / * . nc \

ECMWF/ od / i f s /0001/ f c / s f c / F1280/%Y / * %Y%m%d 1h . nc \
ECMWF/ od / i f s /0001/ f c / L137 CL42 / F1280/%Y / * %Y%m%d 3h . ...

...nc

17.3 OpenMP

Before the introduction of the domain decomposition, the LOTOS-EUROS model used
OpenMP to employ multiple processors. The domain decomposition usally scales much
better with increased number of processors, but on some architectures it might still be ben-
eficial to combine it with OpenMP.

17.3.1 Pragma’s

The OpenMP standard uses special comments called pragma’s in the source file to tell the
compiler that multiple processors could be used for a certain piece of code:

!$OMP p a r a l l e l
!$OMP do
do j = 1 , ny

do i = 1 , nx
! apply per g r i d c e l l :
c a l l Something ( c ( i , j , : , : ) , . . . )

end do ! i
end do ! j
!$OMP end do
!$OMP end p a r a l l e l

17.3.2 Enable OpenMP

To run on multiple threads, enable the flag and specify the number of available threads:

! enable OpenMP ( True , False ) ?
par . openmp : True
! number o f threads :
par . nthread : 0

It is our experience that usually 3 to 4 is a good choice, more than 8 will not lead to a further
decrease of total runtime.
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17.3.3 Comparing run times

The DIADEM post-processor (section 18.1) could be used to visualize run times and speed
up for different numbers of OpenMP threads. Figure 17-4 shows the result for the current
version. An almost perfect speedup is achieved for the advection, vertical diffusion, and
chemistry. The overall speedup is hampered however by the I/O (reading meteo, writing
results) and the time step setup (emission model). With 2 threads a reasonable speedup
of 1.5 is reached, while with 4 threads only a speedup of 2 is reached.

For Kalman Filter applications which perform the time loop many times but the setup only
once, a much better overall speedup will be reached.

Figure 17-4 Time spent on different processes and their speedup for runs using OpenMP
parallelization.

17.3.4 Adding new OpenMP directives

To add OpenMP directives to new code, the following approach is suggested.

1. Create a new rcfile that configures a short model run:

• simulation over, for example, 6 hours only, since otherwise testing will take too
long;

• compiler flags ’optim−strict’, since otherwise simulation results might differ slightly
between two runs with and without OpenMP;

• save restart files at least at the end of a run.

2. Use the ’diadem’ post-processor (section 18.1) to show the run time profiles, produce
bar graphs of the the total run time, and plots of the speedup. Search for a processes
on which a relative large amount of time is spent, and is a candidate to add OpenMP.
Eventually add extra timer statements to figure out in more detail which part of the
model is expensive.

3. Add new OpenMP directives or change existing ones. Run ’ ttb ’ and check if the
results are still the same; if not, comment some of the new OpenMP directives and
try again.

4. Repeat some the steps until the model cannot speedup anymore, or until there is are
no routines left in which OpenMP directives could be inserted.

17.4 Timing

The time spent on different tasks in the model is continuously measured.
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A timing profile is written to a text file with extension ’ . prf ’ in the output directory. In the
header of this file, a pretty print of the absolute and relative time spent on a task and its
sub-tasks is shown:

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−
t imer system clock (%)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−
. . .
model t ime loop 11504.66

t ime step output 712.27 ( 6.2 %)
t ime step setup 1223.58 ( 10.6 %)
ad jus t 49.89 ( 0.4 %)
advect ion 573.52 ( 5.0 %)
chemist ry 68110.19 ( 59.3 %)
v e r t i c a l d i f f u s i o n 1144.94 ( 10.0 %)
dry depos i t i on 217.74 ( 1.9 %)
sedimentat ion 24.93 ( 0.2 %)
wet depos i t i on 23.61 ( 0.2 %)
emission 35.59 ( 0.3 %)
other 679.41 ( 5.9 %)

. . . .

The DIADEM post processor (section 18.1) could be used to create a browsable table of
this profile bar graphs to visualize. Figure 17-5 shows an example of this for the processes
in the time loop, comparing two patches.

Figure 17-5 Run time spent on processes for v1.7.009 and v1.8.000 . Note that for v1.7.009 the
’time step output’ task was included in the ’other’ task.
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18 Post processing and visualization

Post-processing and visualization of the model output is often very project and user spe-
cific. The netCDF file format compiliant with conventions ensures that many packages can
be used (e.g. Matlab, Python, IDL). In this chapter we give an overview of the available
standard tools, which will help a user with the first steps.

18.1 DIADEM - DIAgnostic Data End Mix

18.1.1 Introduction

The ’DIADEM’ software (’DIAgnostic Data End Mix ’) is a set of tools that could be used to
produce some plots for the first insight in the model results. What it can do is:

• extract statistics and other numbers from the output:

– concentration fields averaged over the simulation time
– time series at observation stations
– statistics of time series
– . . .

• create plots from the extracted data

• create an html index page to the plots to be able to browse through the data

Figure 18-1 shows an example of how the main index could look like. A gallery of produced
figures is shown in figure 18-2.

18.1.2 How to run

To start DIADEM, call the main script and pass an rc-file with settings to it; a template for
the rc-file is also found in the DIADEM version directory:

<path−to−diadem−vers ion >/ b in / diadem rc / diadem . rc

You need to change the settings to point the scripts to the location of the model output, the
time range to use, which plots to make, etc.

18.2 GrADS

The Grid Analysis and Display System (GrADS http://www.iges.org/grads) is an interactive
desktop tool that is used for easy access, manipulation, and visualization of earth science
data.It is very suitable to quickly browse through the data without scripting and perform a
fist screening of the output.

18.2.1 Control files

LOTOS-EUROS supports the use of GrADS by adding control files ( . ctl ) to the output
directories that are used by GrADS to read the output and define the correct grid, time
range, etc.

http://www.iges.org/grads
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Figure 18-1 Example of DIADEM main index.

Figure 18-2 Gallery of DIADEM produced figures comparing v1.7.009 with v1.8.000 .
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Figure 18-3 Screenshot of a GrADS graphics window with a snapshot of modelled PM10
concentrations and timeseries of PM10 and PM2.5 in gridcell corresponding to Utrecht
(Netherlands)

18.2.2 Running

If GrADS is installed, use the following command to start:

grads
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19 Tools

The LOTOS-EUROS ’tools’ are additional software packages next to the model.

After describing how to obtain a copy of the packages, the purpose and usage of each
of the tools is shortly discussed. More detailed information is usually available in the tool
directory itself.

19.1 DIADEM - DIAgnostic Data End Mix

DIADEM is a post-processor that could be used to create various types of plots from the
model output. See section 18.1 for details.

19.2 LEIP - LOTOS-EUROS Input Processor

The LEIP scripts are used to handle the model input data. The following tasks could be
performed:

• Extraction of data from ECMWF archives:

– MARS archive with data produced by the meteorological or wave model;

– ECFS tape archive with data produced by research models, for example the
MOZART model coupled to the atmospheric model in the context of the MACC
project.

For this task LEIP needs to run on the ECMWF member state server.

• Transfer of data produced by LEIP at the member state server to a local machine.

• Collection of local available input data in order to provide it to external users.

For more information see the documentation in the package itself.
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20 Creation of a new version

20.1 Versions, beta versions, and patches

For an overview of what a version and/or a patch is, see first chapter 4.

The development cycle of LOTOS-EUROS consists of the following steps:

• Release of a new version.
A version number consists of a main and a subnumber, e.g. ’v2.3’ . In addition the
patch number could be added, which is ’000’ for this initial release; the total identi-
fication is then ’v2.3.000’. The code is a copy of the latest prior patch, for example
’v2.0.001’. Typically a new version is released once per year.

• Development of patches. A patch number consists of three digits, the initial patch
for a new release is ’000’. New patches include extra features and bug fixes, and
are created when considered urgent. The creation of a new patch consists of these
steps:

– Introduction of a beta version. A beta version is a special project on top of an
existing patch. A beta version is identified by the number that will be used for the
next patch and an extension, e.g. ’v2.3.001-beta’.

– Finishing of the beta version, including validation run to check for un-explainable
changes.

– Release of a new patch , e.g. ’v2.3.001’, which is a copy of the latest beta
version.

After release, both the patch and the original beta version are not to be changed
anymore.

The next sections contain checklists for what to do for release or creation of (beta)version
or patch.
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21 Coding conventions

How should new parts of code be written ? Some ideas.

• Files contain either 1 module or 1 main program.

• Model specific files have a prefix equal to the model name:

l e d a t a . F90
le process . F90

:

• Modules have the same name as the source file:

module LE Process
. . .

end module LE Process

• Module names (thus file names) should reflect the content:

! Data t h a t are requ i red f o r many d i f f e r e n t modules
module LE Data

. . .
end module LE Data

• The tasks to be performed by a module could be distributed over a number of sub
modules:

LE Data # top module

LE Data nc LE Data hdf . . . # s p e c i f i c

LE Data Base # shared e n t i t i e s

In this case, other model routines should access the entities only via the top module:

use LE Data , on ly : LE Data Setup
use LE Data , on ly : temper , humid , t s u r f

• Public routines in a module should start with the module name:

module LE Data

p r i v a t e
p u b l i c : : LE Data Setup
. . .

con ta ins

subrou t ine LE Data Setup ( t1 , t2 , s ta tus )
. . .

end subrou t ine LE Data Setup

. . .

end module LE Data

• If a module defines public data, a module initialization and finalization routine should
be provided. These routines might be dummy to be prepared for future extensions.
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module LE Data

p r i v a t e
p u b l i c : : the answer
p u b l i c : : LE Data In i t , LE Data Done
. . .

i n t e g e r : : the answer

conta ins

subrou t ine L E Da ta In i t ( s ta tus )
. . .
! something to be done :
the answer = 42
. . .

end subrou t ine L E Da ta In i t

subrou t ine LE Data Done ( s ta tus )
! noth ing to be done .

end subrou t ine LE Data Done

. . .

end module LE Data

• If a module defines a public type rather than public data, its name should start with
the prefix ’T ’ followed by the module name. An initialization and finalization routine
should be created, eventually doing nothing:

module RcFi le
. . .
p r i v a t e
p u b l i c : : T RcFi le , RcF iLE In i t , RcFiLE Done
. . .
type T RcFi le

i n t e g e r : : i d
. . .

end type T RcFi le

conta ins

subrou t ine RcF iLE In i t ( r c f , fname , s ta tus )
type ( T RcFi le ) , i n t e n t ( out ) : : r c f
charac te r ( len =* ) , i n t e n t ( i n ) : : fname
in teger , i n t e n t ( out ) : : s ta tus
. . .
! something to be done :
r c f%i d = 123
open ( u n i t = r c f%id , f i l e = t r i m ( fname ) , form = ’ format ted ’ , i o s t a t ...

...= s ta tus )
. . .

end subrou t ine RcF iLE In i t

subrou t ine RcFiLE Done ( r c f , s ta tus )
type ( T RcFi le ) , i n t e n t ( i nou t ) : : r c f
i n teger , i n t e n t ( out ) : : s ta tus
. . .
! something to be done :
c lose ( r c f%id , i o s t a t = s ta tus )
. . .

end subrou t ine RcFiLE Done

. . .
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end type RcFi le

• Subroutines return an integer status value:

! r e t u r n s ta tus :
! <0 : warning
! 0 : ok
! >0 : e r r o r

subrou t ine P r o c e s s I n i t ( s ta tus )
in teger , i n t e n t ( out ) : : s ta tus
. . .
! ok
s ta tus = 0

end subrou t ine P r o c e s s I n i t

• Functions are ’pure’ and preferably ’elemental ’.
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