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1 Introduction

1.1 What can be found in this guide?
This is the User Guide of the LOTOS-EUROS model. The purpose of this guide is to provide
information on how to:

obtain a copy of the source code;

compile and setup a simulation;

run the model

add new parts to the code

For information about the physical processes and parameterization used in the model we refer
to Manders and team [1].

The User Guide contains the following chapters.

Chapter 2 describes the various websites related to the model.

How to install themodel is described in Chapter 3 on the version control system, and Chapter
4 on the structure of the source files.

How to compile and run the model is described in Chapter 5. This requires proper configura-
tion of paths to data and run directories, compiler names, library locations, etc.; details are
discussed in Chapter 6 on libraries, Chapter 7 on pre-processing macro’s, and Chapter 8 on
input data.

Chapters 9 on the grid, 14 on the chemistry schemes cbm4 and cbm7, 11 on meteorological
data, 13 on the vertical levels, 14 on the chemistry code, and 16 on output are useful when
a user would like to adapt the configuration of the model.

The final chapters discus more in-depth elements such as employing parallel computation
(18), post-processing tools (19), additional tools (20), and coding conventions (21).
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2 Websites

2.1 Public model website
The main source of information on LOTOS-EUROS is the public website:

airqualitymodeling.tno.nl/lotos-euros

The website contains general information, links to the operational forecasts, documents, an
overview of publications, and information on how to obtain the open-source version.

2.2 SharePoint site
Documents and data sets specific for the open-source version can be found on the SharePoint
site (username/password requested):

https://365tno.sharepoint.com/teams/T92252/
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3 Version control system

The open-source version of LOTOS-EUROS is not available in an open version control system.
Instead, package files are made available to users through the OpenLE SharePoint site (see
section 2.2).

Users are encouraged to upload their contributions to the model to the sharepoint site. The
development team of LOTS-EUROS will then take care of integration within new releases.
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4 Source files

4.1 Identification of a model version
Eachmodel version is given a three-leveled key, for example ”v3.0.000”. Here, the first 2 numbers
identify the base version number (”v3.0”) while the third is a patch number (”000”). New base
versions are usually released before the beginning of a new year. Throughout the year, patches
might be released to fix a bug or to add new functionality to the current base version.

If you are a new user it is advised to simply use the latest version. As explained in the next
section, list the directory ’base’ to see what is the latest patch in your copy.

4.2 Directory structure
The LOTOS-EUROS model is shipped in the following directory structure:

lo tos −euros /v3.0 / # Vers ion d i r e c to r y
README # F i r s t a id informat ion .
base / # Base sources
000/ # Patch d i r e c t o r i e s
001/ #
: #
p ro j / # Mod i f i ca t i ons to the base source
too l s / # s c r i p t s fo r meteo preprocess ing etc .

At the level of the patch number (000 etc.), a number of subdirectories are present with
prescribed names that help to keep Fortran files, scripts, and other data clearly separated
from each other:

base /000/ s rc / # Fort ran sources
base /000/ b in / # s c r i p t s
base /000/ rc / # conf igu ra t ion f i l e s
base /000/ data / # data tab les
:
p ro j / testchem /000/ s rc /
p ro j / testchem /000/ b in /
:

During the setup of a run, a copy of the source files is created in a temporary build directory,
and then compiled over there. The source directories are therefore not polluted by object and
module files.

4.3 Patch directories
A patch is an official update of the base, for example with a bug fix or with a new feature that is
supposed to become part of a new release. The code of a patch version is stored in the ’base’
directory:

base /000/ # i n i t i a l base vers ion
base /001/ # f i r s t update
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base /002/ # second update
base /003/ # . . .
:

The complete code of a base+patch is stored in the patch directory.

In the rest of this document we will simply refer to a ’base+patch’ code as a ’base’ version. If
not specified explicitly, the initial patch number is ’000’.

4.4 The concept of source projects
A base directory like ’base/000’ contains a frozen version of the model. A base version should
run without any problem.

In addition to a base, a project could be defined as a modification of files in the base source.
A project could also include new files that are not part of the base yet. Typically, projects are
defined to:

implement a non-standard feature that is very specific to an infrequently used application.

create special output required for some applications.

test new module features.

For example, a source code could be combined from the following directories:

base /000/ s rc / # base+patch
p ro j / testchem /000/ s rc / # tes t code
p ro j /myoutput /000/ s rc / # user s p e c i f i c

In here, the ’base/000/src’ directory contains a complete model source, from which some files
are replaced by those from the ’proj /testchem/000’ directory, and in addition by some from the
proj /myoutput/000’ directory. The order is important: the latest version of a file that is copied
will be the one that is actually compiled.

A list of projects to be used should be specified in the run configuration file (explained in section
5.5). For this example it will look like:

my. source . d i r s : base /000 \
p ro j / testchem/000 \
p ro j /myoutput/000

Although not necessary, it is good practice to include the patch number as a sub-directory of a
project. In this way it is immediately clear to which patch this project is an extension.
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5 Running LOTOS-EUROS

This chapter describes how to configure and start a run with the LOTOS-EUROSmodel. In section
5.1 a quick start is presented; from section 5.2 onwards the steps are explained in more detail.

5.1 Quick start
LOTOS-EUROS can be run by taking the following steps. This is just to give a first impression or a
quick reminder; for details, take a look at the sections that follow.

1. Go to the required version directory:

cd lotos −euros /v3.0

2. Decide which patch number should be used, for example ’000’. Template settings for this
patch are available in:

base /000/ rc / lotos −euros . rc

This is the main rc file and once the version is properly installed often the only file that has
to be adapted. Browse through it to see if the settings (e.g. run identification, time, domain,
species, emissions) for your run are ok. Eventually create a copy and modify for a specific
run.

3. Setup a run-directory, compile an executable, and run or submit the job script(s) using:

. / base /000/ b in / setup− le base /000/ rc / lotos −euros . rc

5.2 Version directory
The best place to setup and start the model is from what we will call the ’version directory’
directory. Change to that directory before following the next steps:

cd lotos −euros /v3.0

5.3 Run scripts
The script(s) used to setup, start, and submit a LOTOS-EUROS run are placed in:

base /000/ b in /

The ’setup-le’ script is the main script for each run.

5.4 Python files
Tools used to setup a simulation are placed in:

base /000/ py /
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5.5 Rc-files
The configuration of a model run is done through a text file called the ’rc’-file. The abbreviation
’rc’ comes from ’resource’, or actually the Unix ’X-resource file on which the format is based.
However, also ’run configuration’ is a suitable expansion.

5.5.1 Overview of rc-files
The top-level rc file ’lotos-euros.rc’, contains the definition the run id, selects a version the
base source and eventually project code, defines a time range and domain, selects emissions
and boundary conditions, selects the chemistry scheme, etc. To keep the main file as short as
possible, detailed configurations are included from other rc files:

lotos-euros-regions.rc in which several model domains are predefined;

lotos-euros-landuse.rc in which settings and file names for the land use files are defined;

lotos-euros-meteo-*.rc in which paths and settings for input meteorology are defined;

lotos-euros-data-meteo-*.rc in which the meteorology model specific data are specified;

lotos-euros-radiation.rc in which radiation wavelength bands are defined;

lotos-euros-emissions.rc in which paths and settings for anthropogenic emissions are
defined;

lotos-euros-bound-*.rc files in which paths and settings for several sets of boundary
conditions are given;

lotos-euros-output.rc in which one can specify the species and fields that have to be put
out;

lotos-euros-output-label.rc in which the output species and fields for a labelling calcu-
lation are defined;

lotos-euros-expert.rc in which low-level expert settings are defined, like the chemistry
scheme to be used, some model specific settings, IO settings, etc.

Also a number of build/compile/run settings are need; these have been distributed into:

lotos-euros-jobtree.rc that defines the jobs that together perform a simulation, e.g. to
build, initialize, and run a job.

lotos-euros-build.rc in which macros and supported species are defined (section 5.5.6).

machine-*.rc files with system-specific settings like compiler and libraries;

compiler-*.rc files with compiler specific flags;

The top-level rc file lotos-euros__anywhere.rc contains with default settings for running
outside the European domain. It configures a run to use land use and emissions sets that are
available globally, but might be less detailed as what has been collected for Europe.
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5.5.2 Start: copy from template
To configure your own run, best is create a sub-directory to store your settings:

mkdir −p p ro j / mytest /000 / rc

This defines that for your project ’mytest’ you will use patch ’ ‘\modelpatch‘’. The sub-directory
’rc’ is used to keeps settings seperated from source files (that you might want to change too in
future).

Then make a copy of one of the template top-level rc-files:
cp base /000/ rc / lotos −euros . rc p ro j / mytest /000 / rc / lotos −euros . rc

Modify it using a text editor, or at least browse through it to see if the settings for your run are
ok. It should be self-explanatory with sections for time, grid, species, chemistry, emissions,
boundary conditions, landuse, output, use of restart files, etc. Below, the format is explained
and some .rc files are treated in more detail. The others should be self-explanatory when
opened in an editor.

5.5.3 Format of the rc-file
In this section the ideas and conventions of the .rc file are explained. A simple example of a
part in the rc-file could be:

! name of input f i l e :
l e . input : / data / a . t x t

This assigns the value ”/data/a.txt” to the key ”le.input”. Tools are available for the run scripts
and the model to read values from an rc-file given the keys. The basic format rules for the rc-file
are:

Keys and values are separated by ’:’ .

Empty lines are ignored.

Comment lines start with ’!’ and are ignored as well.

More advanced usage is possible, for example expansion of keys or environment variables, and
conditional setting using if-statements. For a description of the features see the header of:

base /000/ py / rc . py

The best way to learn about all configuration options is to browse through the template rc-file.
The added comments explain the use of the various keys and the values they can take.

5.5.4 The machine-specific rc-file
An import setting in the main rc-file is the selection of the ’machine’ specific rc-file. This file
contains all settings specific for the computer on which the model is running, e.g. compiler
settings, library locations, data locations, etc. A template is available:

base /000/ rc /machine−template . rc

For each institute/machine combination, a machine-specific rc-file should be created. The
settings are included in the top-level rc-file via:
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! inc lude se t t i ngs :
# inc lude base /$ {my. patch . nr } / rc / $ {my. machine . rc }

When GNU environment modules are used on your computer, the machine settings might be
used to insert ’module’ commands in the top of job scrips. For the TNO server this is for example
used to load the correct environment (using gcc compiler version 13.1.0):

! modules loaded in job s c r i p t s :

* . modules : purge ; \
use / tsn . tno . n l / Data / SV / sv−059025_unix / admin /$ { SERVER } / modulef i les ...

... ; \
load slurm ; \
load $ {my. compiler . su i t e } − su i t e / $ {my. compiler . ve rs ion } ; \
load openmpi / 5 . 0 . 3 ; \
load hdf5 /1.14.4 −2 ; \
load netcdf −c / 4 . 9 . 2 ; \
load netcdf − fo r t ran / 4 . 6 . 1 ; \
load udunits /2 .2 .28 ; \
load lapack /3 .12 .0 ; \
load spblas /1 .02.917 ; \
load nco / 5 . 2 . 4 ; \
load makedepf90 ; \
load lotos −euros

See chapter 6 for information about the external libraries that should be configured in the
machine rc file.

5.5.5 The compiler rc-file
The machine-specific rc-file includes a file with compiler-specific settings:

! GCC compi ler su i te , se lected with environment va r i ab l e s :
# inc lude base /$ {my. l e . patch } / rc / compiler −$ {my. compi ler . su i t e } −$ {my. ...

...compi ler . ve rs ion } . rc

For each compiler suite used to compile the model, a compiler-specific file should be present.

5.5.6 The build rc-file
Many settings that have to do with the setup and installation of the model have been hidden
for the users by collecting them in the ’build’ rc-file, which is included into the main rc file:

! inc lude expert se t t i ngs to bu i l d source code
# inc lude base /$ {my. l e . patch } / rc / lotos −euros −expert . r c

Do not modify this file unless you know what you are doing!

5.6 Setup script
To setup a run, first go to the model version directory:

cd lotos −euros /v3.0

Call the setup script with the rc file as argument to create a run-directory and compile an
executable:
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. / base /000/ b in / setup− le p ro j / mytest /000 / rc / lotos −euros . rc

To see the extra options that are accepted by the setup script, use:

. / base /000/ b in / setup− le −−help

Note that all ’long’ options like ’−−help’ usually have a ’short’ version too, in this case ’−h’ .

A useful option is ’−−new’ or ’−n’, which first removes the existing build directory, followed by
creating a completely new one. In case you receive strange errors from the compiler, that
might have to do with messing up old and new objects, so try whether this option solves the
problems.

5.7 The job-tree
The ’setup−le’ script will start a squence of jobs to initialize and run a LOTOS-EUROS simulation.

By default the jobs are:

le .copy job will copy the source codes to a run directory;

le . build job will compile an executable;

le . run job will run the executable, this is the actual simulation;

le .post job will post-process the output (if necessary).

The list of jobs to be created is defined in:

lo tos −euros − jobt ree . rc

with:

j ob t ree . l e . elements : copy bu i l d run post

The ’le .copy’ job will always run in the foreground.

The ’le . build’ job should probably run in foreground too, since this helps to quickly see compilation
errors. This is defined in:

lo tos −euros . rc

with:

! copy job i s running in foreground ( see ” lotos −euros − jobt ree . rc ” ) ,
! enable the fo l low ing l i n e to have also the bu i l d job in ...

... foreground :
jobt ree . l e . bu i l d . s c r i p t . c l a s s : utopya . UtopyaJobScr iptForeground

The default destination for the ’run’ and other jobs is probably to submit it to a queue system.
Since the queue system is diffent on each platform, the destination is defined in the machine-
specific settings (section 5.5.4). For the TNO platform the SLURM queue should be used:

! de fau l t c l a s s with the job s c r i p t c reator :

* . s c r i p t . c l a s s : utopya . UtopyaJobScr iptBatchSlurm
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This defines that the header of a job file should have comments with SLURM job options. See
the examples of machine specific settings for inspiration on configure job settings for your own
queue system.

5.8 The ’le.copy’ job
This job is the first that is performed and will create a run directory with a copy of the source
code.

5.8.1 Run directory
The first step taken by the ’le .copy’ job is to create a run directory on a location specified in the
rc-file. Typically the run-directory will be located on a scratch space, since a lot of temporary
files are created while running that do not have to be backed-up. A typical content of the the
run directory is:

<rund i r >/ bu i l d / # source code , ob ject f i l e s
<rund i r >/ run / # executable , rc − f i l e s , submit s c r i p t , log f i l e s
<rund i r >/ output / # output f i l e s
<rund i r >/ r e s t a r t / # r e s t a r t f i l e s }

5.8.2 Run-time rc-file
The ’copy’ job will also create a run-time rc-file. This a single settings file with all includes and
variable substitutions resolved; see section 5.5.3 for details.

The run-time rc-file is put in the directory:

<rund i r >/ run / lotos −euros . rc

5.8.3 Collection of a source code
The next step is the collection of a source code in a build directory. The build directory is
usually located on a temporary scratch disk, the exact location is specified in the rc-file. The
sub-directory where the code is collected includes the name of the compiler and the choices
for the compiler flags (see section 5.9.3 for the compiler flag settings). This is done to ensure
that an executable is compiled with the same flags applied for all source files. An example of a
sub-directory name:

<rund i r >/ bui ld_optim −none_check− a l l / s r c /

The concept of source projects is explained in section 4.4. In summary, the first collected
source files are those in the ’base/xxx’ directory. Subsequently, the files from the base version
are overwritten by patches or project specific versions from ’proj/’ directories according to the
specification in the main .rc file.

For example, the rc-file might contain the following setting for the list of source directories to
be included:

my. source . d i r s : base /000 \
p ro j / testchem /000 \
p ro j /myoutput /000
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In this example, the LOTOS-EUROS source is formed from:

1. the files in ’base/000/src’ …

2. …replaced with equally named files from ’proj/testchem/000/src/’ …

3. …replaced with equally named files from ’proj/myoutput/000/src/’.

The test files in ’proj/testchem/000/src/’ will not affect the ’official’ versions of the code. Thus,
if you want to change something in the code, create a new project directory and implement
your changes there.

5.9 The ’le.build’ job
The ’le . build’ job configures the source files and compiles an executable.

5.9.1 Generation of source files
Some source code files are generated by the scripts using settings in the rcfile and data tables.
These are:

source files with tracer definitions and chemistry codes (see section 14);

preprocessing macro include files (section 7).

Default versions of the generated source files are included in the base source. Editing won’t
have any effect; instead change the rcfile settings or the tables that were used to generate
them.

5.9.2 Creation of the Makefiles
The source directory of LOTOS-EUROS contains makefile dependencies in:

Makef i le_deps

This file has been created using the ’makedepf90’ program, and should be sufficient for the
standard source. In case dependencies are changed, for example if new source files are added,
either edit the dependencies file (might be difficult), or ensure that ’makedepf90’ is available on
your system. The program can be downloaded from the the MakeDepF90 website1. To install it
under your own account, use something like:

ta r x − f makedepf90 −2 . 8 . 8 . ta r . gz
cd makedepf90 / 2 . 8 . 8
conf igure −− p r e f i x =$ {HOME} / opt /makedepf90 / 2 . 8 . 8
make
make i n s t a l l

and ensure that the paths are set:

export PATH=”$ {HOME} / opt /makedepf90 / 2 . 8 . 8 / b in : $ { PATH } ”
export MANPATH=”$ {HOME} / opt /makedepf90 / 2 . 8 . 8 /man: $ {MANPATH} ”

When installed (or already present), change the following flag in the machine rcfile (section
5.5.4):

1http://personal.inet.fi/private/erikedelmann/makedepf90
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! I s makedepf90 i n s t a l l e d ?
my. with .makedep : True

This flag is then used in the expert settings (section 5.5.6) to re-create the makefiles automati-
cally by a call to the ’makedepf90’ program.

5.9.3 Compilation
The final step performed by the ’setup−le’ script is the compilation of the executable.

An important configuration choice for compiling is setting the compiler flags. By default, the
executable is compiled with the ’fast’ flags to have a run-time as low as possible. For testing
and debugging it is however useful to enable the ’check’ flags, which could for example trap out-
of-array-bound problems and floating-point-exceptions (division by zero etc). After changing
the code, first run with checks enabled!.

The flags to be applied can be set in the pycasso rc file by a list of keywords. The default setting
for compilation with the fast flags is:

my. bu i l d . conf igure . f l ag s : optim− fas t

For testing and debugging purposes, the ’check’ flags can be turned on with:

my. bu i l d . conf igure . f l ag s : optim−debug check− a l l debug

The actual flags assigned to these keywords are set in the compiler rc-file described in section
5.5.5.

5.10 The ’le.run’ job
This is the actual run.

The executable is started either directly, or via an MPI started to have the correct environment
for the domain decomposition.

5.11 The ’le.post’ job
This job is currently only used to compress output files. The compression is done using the ’NCO’
tools. Often, output data files contain many similar values (zeroes or empty fields). In these
cases, compression of those files leads to considerably smaller files without loss of data.
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6 External libraries

6.1 Library settings
The location of external libraries such as NetCDF is strongly dependend on the machine where
the model is compiled. Configuration is therefore done in the machine settings file described in
section 5.5.4.

6.2 Librararies used in base code
The following external libraries are currently used, of which NetCDF is the only obligatory.

6.2.1 NetCDF library
This library is required for:

reading meteorological and other input data;

writing model output.

The model does not use NetCDF-4 feautures yet; it is therefore sufficient to link with a NetCDF-4
library that was compiled without NetCDF-4 features enabled, or even with a classic NetCDF-3
library.

The machine-specific settings (section 5.5.4) specify the compile and link flags for this library,
for example:

compi ler . l i b . netcdf . f f l a g s : − I / opt / inc lude
compi ler . l i b . netcdf . l i b s : −L / opt / l i b − l ne t cd f f − lne tcd f

Note that in case shared libraries are used (as in this example), then it might turn out to be
necessary to tell the linker to add the path to the shared libraries to the runtime search path:

compi ler . l i b . netcdf . l i b s : −L / opt / l i b − l ne t cd f f − lne tcd f \
−Wl, − rpath −Wl , / opt / l i b

6.2.2 UDUnits library (optional)
The UDUNITS library is used to check if units read from a file match with the units used in the
model. Some common unit comparisons have been hard-coded, so that for example for the
test input provided with the open-source version the UDUNITS library is actually not necessary.
In that case, the need for a UDUNITS library could be disabled in the machine rcfile (section
5.5.4) using the empty setting:

my. udunits . def ine :

If the model complains however that a certain unit check cannot be performed, either hard-
code a comparison on the location identified by the error message, or enable the need for a
UDUNITS library. The UDUnits library might be available as version 1 or 2; since the interface
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is rather different between these, it was necessary to distuinguish between them in the code.
Therefore, the flag in the machine settings should define explictly which version is available on
the system:

!~ vers ion 1 i s ava i l ab l e :
!my. udunits . def ine : with_udunits1
!~ vers ion 2 i s ava i l ab l e :
my. udunits . def ine : with_udunits2

Note that for version 2 a C-binding in used that requires a compiler with F2003 support.

6.2.3 Pandas Python library (optional)
The Python scripts that generate chemistry source files for the model (GENES scripts, described
in Chapter 14) use the Pandas library when the CBM7 chemistry scheme is selected. This has
been tested with Pandas version 2.1.4, older versions are likely to work as well.

6.3 Adding new libraries
To compile the model with new libraries, configurations are required at a number of levels.

The user should explicitly enable the required libraries using macro definitions. For example,
to compile with the HDF5 library, introduce a newmacro ’with_hdf5’ following the instructions
in chapter 7.

Ensure that this macro is defined by adding it to the ’define’ list in the expert settings (section
5.5.6):

bu i l d . conf igure . macro . def ine : with_netcdf with_hdf5

For this macro, provide a list with library names that should be linked with. For example, if
HDF5 is required, then also a number of compression libraries should be linked. For this, the
expert settings should contain a definition similar to:

bu i l d . conf igure . l i b s . i f d e f . with_hdf5 : hdf5 sz jpeg z

The order in which the libraries should be linked is defined by:

bu i l d . conf igure . l i b s . a l l : netcdf hdf5 sz jpeg z

The machine-specific settings (section 5.5.4) specify the compile and link flags for a library,
for example:

compi ler . l i b . hdf5 . f f l a g s : − I / opt / inc lude
compi ler . l i b . hdf5 . l i b s : −L / opt / l i b − lhd f5_h l \
− lhd f5_ fo r t ran − lhdf5
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7 Pre-processor macro's

Preprocessing macro’s are a convenient tool in programming large applications. This chapter
describes the use of these macro’s in the LOTOS-EUROS source.

7.1 Expert settings
Working with macro’s is considered an expert job, since small typo error could cause a part of
the code to be omitted without noticing. Therefore, the expert rcfile includes lists of macro’s
that are supported. The source code is checked on use of macro’s that are not supported; if
these are found, an error is raised and configuration stops. The lists in the expert rcfile are used
to add macro definitions to the proper macro include file.

7.2 Example of usage
Sometimes a minor modification of the actual source code is needed, for example because
certain compilers cannot digest a piece of code, or to enable code that depends on an external
library that might not be available (but is not always needed either). For this so-called pre-
processing macro’s are used. For example, the following code hides the use of the HDF4 library
that is usually only needed for very specific input files:

# i f d e f with_hdf4
! open hdf f i l e :
c a l l HF90_Open ( ’ input . hdf ’ , HF90_READ , hdf_id , s tatus )
. . .
#e l se
stop ’ not compiled with HDF4 l i b r a r y enabled ’
#end i f

In this example, if themacro ’with_hdf4’ is defined, then only the code between ’#ifdef’ and ’#else’
is used, otherwise the code between ’#else’ and ’#endif’ is used. If the code is compiled with
the HDF4 library enabled, then the macro ’with_hdf4’ should be defined and the file ’input.hdf’
will be opened as specified, if this piece of code is called. However, a user wants to run the
model, but does not need to read HDF4 files, the macro definition could be omitted. This is in
particular useful if this library is not available; the user should not be bothered with a compiler
complaining that a library is not available while it is not used anyway.

7.3 Macro definition include files
Macro’s are defined by statements like:

#def ine with_hdf4

All macro definitions are collected in small include files. For example, for macro definitions in
LOTOS-EUROS source files the include file ’le . inc’ could look like:

!
! Include f i l e with macro de f i n i t i o n s .
!
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#def ine with_hdf4

This file is included in the header of a file with:

# inc lude ” l e . inc ”

7.4 User settings
Whichmacro’s are defined is something that is often user and application dependent. Therefore,
a list of macro’s to be defined is part of the rcfile:

my. l e . def ine : with_hdf4

From the values in this list the macro include file(s) are written automatically by the source
configuration scripts.
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8 Input data

8.1 Test package
A package with input data is available to run the model with the default settings to verify proper
installation. It can be downloaded from the TNO FTP site (web-ftp81.tno.nl).

Specific input files need to be retrieved separately. For instance, MACC III emission data are
not included but can be obtained upon request. On the other hand, meteorological data and
boundary conditions from MACC cannot be provided by TNO.

8.1.1 Content
The content is as small as possible, but large enough for a model run with the following
properties:

simulation period August 2012;

European domain as used for operational forecast;

MACC-II emissions 2009);

boundary conditions from climatology

The directory tree of the data is as follows:

inputdata /
/ammonium/
/ bound /
/ cf −standard /
/ emissions /
/CAMS/REG / v2_2_1 /
/ LEIP /
/ europe_w30e70s5n75 /
/ECMWF/od / # meteo
/MACC/ f i r e /
/ landuse /
/ f o r e s t /
/ s o i l t e x t /
/ so i lwater_avg /
/ t r a f f i c /
/ standard /

8.1.2 Settings
The location of the input data is machine specific and therefore set in the ’machine.rc’ file:

my. data . d i r : / data / inputdata
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8.2 See also
For more detailed information on certain types of input data, see:

chapter 11 on meteorological data;

chapter 12 on boundary conditions.
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9 Horizontal grid

9.1 Grid definition
Two different grid types are supported: a regular longitude/latitude grid (”cartesian”), and a
grid that is curved in longitude/latitude sense (”non-cartesian”).

9.1.1 Cartesian grid
The default grid for most runs is regular in longitudes and latitudes, thus with equal spacing in
degrees in both directions. In longitudes/latitudes the domain is square (figure 9.1, left panel).

The rcfile should first specify the grid type:

! def ine g r i d type :
g r i d . type : ca r tes ian

For this grid type, the settings should then specify the lower-left corner, the resolution, and the
grid size:

g r i d . west : −15.0
g r i d . south : 35.0
g r i d . dlon : 0.50
g r i d . d la t : 0.25
g r i d . nx : 100
g r i d . ny : 140

Template grid definitions are available in:

lo tos −euros −reg ions . rc

Figure 9.1: Examples of model extend on cartesian grid (left) and non-cartesian grid (right).
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If this file is included in the main rcfile, the grid definition to be used should be selected using a
keyword. For example, the following settings will enable the ’MACC-II’ grid definition as used in
the operational CAMS forecasts:

! s e l ec t g r i d used by operat iona l fo recas ts :
g r i d .name : MACC− I I

! g r i d d e f i n i t i o n s :
# inc lude base /$ {my. patch . nr } / rc / lotos −euros −reg ions . rc

9.1.2 Non-cartesian grid
A non-cartesian grid is typically used when themodel is driven bymeteorological data fromWRF
or COSMO. In that case it makes sense to use the same grid definition as the meteorological
model. In longitudes/latitudes the domain is usually wider towards the poles to have grid cells
that have equal width in km (figure 9.1, right panel).

In the rcfile, first specify the grid type:

! def ine g r i d type :
g r i d . type : non−car tes ian

The grid definition should then be read from a sample file with the WRF or COSMO meteo. The
settings should specify the sample file name and the name of a variable from which the grid
definition will be read, for example:

! sample f i l e :
g r i d . f i l e . name : / data /WRF/ wrfout_d02_2014−01−01_00 :00 :00
! sample va r i ab l e :
g r i d . f i l e . var : var_name=HGT

In practice it is often only necessary to run the model on a sub domain of the input data. The
following setting could be used to select this sub domain, or to specify that the full grid should
be read:

! subset [ i1 , i2 , j1 , j2 ] , negat ives fo r a l l :
! g r i d . f i l e . subset : −999 −999 −999 −999
g r id . f i l e . subset : 50 110 50 150

9.2 Zooming
Running in zoommodes simply means running the model twice: first for a large domain and
coarse resolution, then for a smaller domain in fine resolution. The later should be configured
to read concentrations from the first run as boundary conditions.

The following steps are usually taken to setup a zoom run.

1. Perform a run on large domain:

large domain covering the future zoom grid;

coarse resolution;

output of 3D concentration fields:
all relevant tracers; use keyword: ‘all-advected’
bounding box around zoom region to save disk space (section 16.2.1);
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conc-bound output; conc-bound output generate concentrations + pressure and
height information of grid cells

remember the run-id and the output directory.

2. Perform the zoom run:

small domain within the previous domain;

fine resolution;

boundary condition; in main .rc file: Load bound-rc file including settings to use LE-run
as boundaries. (lotos-euros-bound-*-le.rc). ‘conc-bound‘ output will be interpolated to
zoom-domain

parent domain; Domain name of the boundary run

eventually put out concentrations in the halo cells to check the inheritance of the
boundary conditions, see section 16.2.1.

Note that the time steps for the zoom run are automatically reduced tomatch the CFL (Courant)-
criterion.

In the setting of the rc-file the type of run can be given (‘my.run.type‘), the necessary outputs
will be defined by default.

Bound: run will be used as boundary run; keyword ‘all-advected‘ is used to get all advected
tracers in output (conc-bound files).

Zoom: run will be used as zoom run; Parent domain should be defined, rc-file including
LE-settings will be loaded.

Zoom or Bound_plus_Zoom; Run is used as both boundary and zoom run (middle domain in
a three-step nested approach).

9.3 Mapping of input data
Input is interpolated or averaged automatically to the required grid; if the model domain
extends beyond the coverage of the input, an error is raised.
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10 Vertical levels

Three different vertical level definitions are supported. Table 10.2 shows selected properties for
the different definitions discussed below.

mixlayer hyblevel metlevel

Table 10.1: Illustration of level definitions.

levels.type mixlayer hyblevel,metlevel
number of layers 4 or more unrestricted
vdiff.kz_type msp (default) normal

normal (optional)
adjust process yes no
volumes constant within time step (1 hour) dynamically

Table 10.2: Properties of vertical level definitions.

10.1 Mixed-layer definition
The ’mixed-layer’ definition was the standard method for many years for the vertical structure
in LOTOS-EUROS. The levels are defined every time step in terms of heights above the surface,
and some of them evolve dynamically with the boundary layer height obtained from the
meteorology (figure 10.1, left panel). Input data will be mapped to this layer definition.

In a standard configuration with 5 layers, the first layer is thin surface layer of 25 m. On this
the second layer is placed with the top at the boundary layer; this is therefore grid cell and
time depended. The third and forth layer are reservoir layers of equal thickness of at least 500
m, with the forth layer having a top at 3500 m above the surface or more if needed to have
the minimal thickness. On top of this the fifth layer is placed with a top at 5000 m or more if
needed to have a minimum thickness of 500 m. The minimum thickness is increased with a
factor times the orography of surrounding cells to have somewhat thicker cells over mountain
area’s; by using thicker cells, the minimum time step implied by the advection is higher which
saves run time.

This level type is enabled using:

l e v e l s . type : mixlayer

The number of layers to be used is defined with:

l e v e l s . nz : 5
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The thickness of the surface layer is defined with:

mixlayer . sur f_ top : 25.0

The mixing layer should be at least as thick as the surface layer, which is defined by a minimum
value for the top above the surface:

mixlayer . mix_topmin : 50.0

The fifth and higher layers are defined using lists that define the top above the surface, the
minimum thickness, and the factor to be used in combination with the standard deviation of
the orography. For the 5 layer version the configuration is:

mixlayer . top : 3500.0 5000.0
mixlayer . dmin : 500.0
mixlayer . sdofac : 1.0 0.5

For an 8 layer version the configuration looks like:

mixlayer . top : 3500.0 5000.0 6500.0 8000.0 10000.0
mixlayer . dmin : 500.0
mixlayer . sdofac : 1.0 0.5 0.0 0.0 0.0

A final configuration is the definition of the thickness of the aloft layer that will hold the top-
boundary concentrations:

mixlayer . da lo f t : 1000.0

With this vertical scheme, one of the model operators is an ’adjust’ step that changes the layer
heights towards a new boundary layer height. This is applied at the start of every time step.
During the time step, the grid cell heights (and thus cell volumes) are kept constant.

For diffusion between two layers two options are available to compute diffusion coefficients
𝐾𝑧 at the layer interfaces. The first is the ’msp’ method that has been used traditionally, which
adjusts the 𝐾𝑧 values for differences in layer thickness around the interface; this is enabled
with:

v d i f f . kz_type : msp

Alternatively also the ’normal’ method could be enabled that is used by the other level defini-
tions.

10.2 Hybrid layer definition
The ’hybrid layer’ definition is the current standard method for the vertical structure in LOTOS-
EUROS. A hybrid-sigma-pressure scheme defines vertical layers using pressure boundaries that
follow the surface pressure at the lower levels, and have fixed pressure boundaries at the top.
The layers therefore follow the orography near the surface, which evolves slowly to layers at
fixed pressure higher up (figure 10.1, middle panel). This scheme is for example used by the
ECMWF meteorological model, and is therefore useful if LOTOS-EUROS is driven by this data.
Input data will be mapped to the chosen layer definition anyway, regardless whether this is
also a (different) hybrid definition, or something else.
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At every time step, the the pressures at a layer interface ar

𝑝(𝑖, 𝑗, 𝑘, 𝑡) = 𝑎(𝑘) + 𝑏(𝑘) 𝑝𝑠(𝑖, 𝑗, 𝑡) (10.1)

In here, (𝑖, 𝑗) denotes the horizontal cell indices, 𝑘 the layer interface index, and 𝑡 the time. The
interface coefficients 𝑎 and 𝑏 define for each layer which part fraction of the pressure is constant
and which fraction depends on the surface pressure 𝑝𝑠 that is part of the meteorological input.

The hybrid level definition is enabled using:

l e v e l s . type : hyb leve l

The number of layers to be used is then defined with:

l e v e l s . nz : 12

The rest of the atmosphere (above the layers simulated by the model) is filled with concentra-
tions from the global boundary conditions; these are used for top boundary conditions, and to
simulate satellite observations. Specify the total number of layers with:

l e v e l s . nz_top : 18

NOTE: the first top layer above the model layers should not be too thick! This will be filled with
concentrations from the global boundary conditions, averaged over the layer. If the layer is too
thick, the ozone concentrations will include part of the stratospheric ozone layer, and the inflow
of ozone from the top will be too high!

The hybrid coefficients 𝑎 and 𝑏 should be provided in a text file, for which an example is provided
with the model distribution:

hyb leve l . c o e f f i c i e n t s : data / hyblevel −137_CL42__ml12p06

The number of coefficients in the file might exceed the requested number; the model will simply
read the first values that define the interfaces from surface to model top.

In this scheme, the layers are first defined in terms of pressure boundaries, which then implies
the heights above the surface (using temperature, humidity, and orography). The cell volumes
change dynamically but do not follow the evolution of the boundary layer, and therefore no
’adjust’ process is needed as used for the ’mixlayer’ scheme.

Diffusion coefficients between layer interfaces should be normal 𝐾𝑧 values, thus not adjusted
for extreme differences in layer thickness:

v d i f f . kz_type : normal

10.3 Meteo level definition
With this method, the model will copy a level definition from a set of meteorological data.
Depending on the data this definition could define layer interfaces as pressures or heights above
the surface. The model data settings as described in chapter 11 should define the correct
settings to read and process the data. This method is useful to keep LOTOS-EUROS as close to
a meteorological model as possible. The ’meteo-level’ definition is therefore a generalization
of the ’hybrid-level’ method, which does not necessarily require a surface pressure and hybrid
coefficients but could use other level definitions too (figure 10.1, right panel).
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The meteo level definition is enabled using:

l e v e l s . type : metlevel

The layers to be used are defined with two settings: the number of layers, and for each of these,
the number of original layers that is coarsed in them:

! number of l aye r s that should be used :
l e v e l s . nz : 12
! laye r combination , empty fo r no combination :
metlevel . combine : 1 1 1 2 2 2 2 2 2 2 2 2

The rest of the atmosphere (above the layers simulated by the model) is filled with concentra-
tions from the global boundary conditions; these are used for top boundary conditions, and to
simualte satellite observations. Specify the total number of layers, and how to coarsen them
from the meteo layers using:

! t o t a l number of l aye r s inc lud ing ” top ”
l e v e l s . nz_top : 19
! laye r combination , empty fo r no combination :
metlevel . combine_top : 1 1 1 2 2 2 2 2 2 2 2 2 1 2 3 3 4 4 4

NOTE: the first top layer above the model layers should not be too thick! This will be filled with
concentrations from the global boundary conditions, averaged over the layer. If the layer is too
thick, the ozon concentrations will include part of the stratospheric ozone layer, and the inflow
of ozone from the top will be too high!. So first top-layer should not be a combination of layers
but consist of only 1 single layer

Using a layer definition from a meteo model requires different settings depending on the
originating model. An example of such a specific configuration is provided as:

rc / lotos −euros −data−meteo−cosmo−metlevel . r c
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11 Meterological data

11.1 Introduction
The LOTOS-EUROS model uses off-line meteorology. Meteorological fields are read from files
with time series of data at for example 3 hourly resolution.

The storage and reading of meteorological fields has been revised completely for version 2.0.
The new implementation is based on general routines that are able to handle data files in
NetCDF format following common conventions.

Previous versions of the model also supported meteorological data from the RACMO regional
climate model and the WRF meteorological model. The new generic interface of the model will
be extended to support data files produced by these models too.

11.2 Data definition in model
The meteorological data in LOTOS-EUROS is allocated dynamically, and only if actually needed.
The dynamic allocation is part of generic facility in the model that is intended to hold all gridded
variables, but as first step holds the meteorological variables.

Definition of the meteorological variables is done in the settings file(s), in particular:
lo tos −euros −data . rc

The header of the files contains details of the possible settings, here we describe the main steps
only. The first definition is a (long) list of all data variables supported by the model. This list
contains for example a keyword to describe the 2m surface temperature:
data . vars : . . . t s u r f . . .

For each of the variables, a detailed description should be provided in the form of specific
settings lines. For the surface temperature ’tsurf’ this is for example:
! def ine :
data . t s u r f . long_name : sur face temperature
data . t s u r f . un i t s : K
data . t s u r f . range : 0.0 In f
data . t s u r f . g r id type : c e l l
data . t s u r f . levtype : s f c
data . t s u r f . datatype : i n s t a n t _ f i e l d _ s e r i e s
data . t s u r f . input : meteo . t s u r f

The detailed settings contain (see also the header of the settings file):

a descriptive longname, used when the variable is put out;

the units;

the range of allowed values, used to truncate the variable to realistic values (sometime
necessary to remove tiny negative values for example);
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the horizontal grid on which the variable is defined;

the vertical levels on which the variable is defined;

the datatype (Fortran class), which is mainly related to the temporal behavior (see section
11.6);

a keyword that describes the input mechanism in case the variable should be read from
file(s) (see section 11.7); otherwise, a definition of how to compute the field should be
present (see section 11.8).

11.3 Accessing a variable in the model
In the model code, the variables that are defined in the settings are available from a module:

use LE_Data

The array that holds the variable values should be accessed using a pointer. Use the following
code to access the above defined surface temperature:

use LE_Data only : LE_Data_GetPointer

! t h i s w i l l po int to the surface temperature :
real , po inter : : t s u r f ( : , : , : ) ! ( lon , la t , 1 )

! ass ign po inte r to surface temperature ,
! check i f the un i t s are as expected :
c a l l LE_Data_GetPointer ( ’ t s u r f ’ , t su r f , status , check_units = ’K ’ )
IF_NOTOK_RETURN ( status =1)

! show value in c e l l ( 3 ,4 ) :
p r i n t * , ’ example of surface temperature :  ’ , t s u r f (3 ,4 ,1 )

Note that:

the variables are always 3D, for surface fields the last dimension has size 1;

a check on the units can be used to make sure that the units are as expected (thus degrees
Kelvin and not degrees Celcius);

the call to the ’GetPointer’ routine will return with an error status if the requested variable
was not defined in the settings, or when it was not actually enabled (see section 11.4).

11.4 Enabling a variable in the model
Before a variable could be used, it should not only be defined in the settings, but also actually
enabled. By enabling a variable it will be allocated and filled with the proper values at every
time step.

Enabling is typically done in the initialization routine of a module, where all variables should be
enabled that are used in the module. If a variable is not enabled, for example because some
processes in the model are not used in a particular configuration, it will not be allocated (which
saves memory) and will not be read or computed (saves run time).

To enable a variable, use the following lines of code:
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use LE_Data , only : LE_Data_Enable

! enable surface temperature :
c a l l LE_Data_Enable ( ’ t s u r f ’ , status )
IF_NOTOK_RETURN ( status =1)

11.5 Grid types
The following grid types are supported:

cell
Values valid for the entire cell; this is the most common type. The shape of this grid is
’(nlon,nlat)’.

corner
Values are defined on the corners of cells. This is used to setup the advective fluxes through
the cell edges. The shape of this grid is ’(nlon+1,nlat+1)’.

u-edge, v-edge
Used for fluxes through the west and east sides (’u’), or through the north and south sides
(’v’). The shape of this grid is ’(nlon+1,nlat)’ or ’(nlon,nlat+1)’ respectively.

When fields are read from input files (section 11.7), a re-mapping to the target grid is performed
automatically if possible. Current implementations can handle longitude-latitude grids (even-
tually with irregular spacing), and to some extend the so-called reduced grids which have a
varying number of cells per latitude band.

11.6 Data types
The variable definition contains a setting for the datatype:

data . t s u r f . datatype : i n s t a n t _ f i e l d _ s e r i e s

The following data types are possible:

field
This type is used for a constant field, thus without any change in time, for example the grid
cell area.

instant_field
An instant field is valid for specific instant time. This type is typically used for fields that are
computed from other instant fields, thus not read from a time series in input files.

instant_field_series
Use this type for a variable that is derived from a time series, typically by interpolation in
time between the fields in the series. For example the 2m surface temperature is of this
type.

constant_field
In this context a ’constant’ field means ’constant during a time interval’, for example during
3 hours. A time interval for which the variable is valid is associated with it. This type is
typically used for fields that are computed from other constant fields, thus not read directly
from file.
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constant_field_series
Use this type to read ’constant’ fields from a time series in a file. For example the amount of
precipitation is of this type, since in meteorological data is available as the total amount of
water that has fallen down during some time interval.

11.7 Input descriptions
If a variable should be read from input files, a configuration of the following form should be
present:

data . t s u r f . input : meteo . t s u r f

This setting describes that the details of how the field should be read are defined with settings
starting with ’meteo.tsurf’.

For the current model version, meteo files were created from ECMWF data, see section 20.1 for
creation scripts. Examples of input descriptions for these files are found in the settings file:

lo tos −euros −meteo−ecmwf . rc

Here we show the general idea of the settings; for the specific settings we refer to the actual rc
file.

The input description should first contain an ’input’ value that defines time intervals and
descriptions:

meteo . t s u r f . input : 2012−01−01 00:00 , 2012−12−31 23:59 , fmt1 . t s u r f | \
2013−01−01 00:00 , 2020−12−31 23:59 , fmt2 . t s u r f

That is, a list of time intervals and description keys separated by a vertical line (’ | ’) should be
provided. Given a requested time, the input will be read according to the description associated
with the interval that encloses the time value. This feature is used to handle changes in for
example file formats and resolutions over time, which often occure in operational meteomodels.

The description key refers to settings that are used to define the file and variable name. For
example for the surface temperature these settings could have the form:

fmt1 . t s u r f . name : / data /ECMWF/ s f c /%{yyyy } / t2m_%{yyyymmdd} _3h . nc
fmt1 . t s u r f . var : long_name=2 metre temperature ; var_name=t2m

The ’name’ setting provides a template for the file name in which the variable should be found;
the keywords ’%{yyyy}’ etc. are replaced by actual time values. The ’var’ setting identifies the
file variable, and consists of a ’;’ seperate list of ’key=value’ pairs. The ’key’ could be ’long_name’
or ’standard_name’ in this case it refers to a variable attribute in the netcdf file; a ’var_name’
refers to the variable name itself. A ’standard_name’ is prefered since this might be less subject
to changes than a long name or the variable name. The first ’key=value’ pair that identifies a
variable in the file is used.

For instant fields (valid for a single time step), also the temporal interpolation method should
be defined. Here we define that the expected temporal resolution in the files is 3-hourly, and
that that requested fields should be interpolated linearly in time:

meteo . t s u r f . t i n t e r p : i n t e r po l a t i on= l i n ea r ; step =3; un i t s=hour
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11.8 Computing variables
If a meteo variable should not be read from input files but computed from other variables, the
definition should have a ’call’ description. For example, the following description is used to
define a variable ’srh’ with relative humidity at the surface, which should be computed from
the 2m surface temperature (’tsurf’) and the 2m dewpoint temperature (’dsurf’):

data . srh . long_name : sur face r e l a t i v e humidity
data . srh . un i t s : %
data . srh . range : 0.0 100.0
data . srh . g r id type : c e l l
data . srh . levtype : s f c
data . srh . datatype : i n s t a n t _ f i e l d
data . srh . c a l l : Relat iveHumidityTD ( t su r f , dsur f )

The ’call’ description has the form of a function call, with as arguments a comma-separated
list of source variable names. The function name (’RelativeHumidityTD’) is linked to an actual
function call in subroutine:

Var iab les_Setup (module LE_Data_Var iables )

The arguments of the actual function are usually the name of the target variable (’srh’) and a
list with the names of the argument variables (’tsurf’,’dsurf’).

If a variable with a ’call’ definition is initialized, it is checked if all arguments are names of
variables. When the variable is enabled, the arguments are enabled too.

11.9 Example: 3D field
The following example show the definition of a 3D field, in this case temperature. Such a variable
combines most of features described in this chapter.

The input time series of temperature is here assumed to have a 3 hourly resolution, and defined
on pressure levels. At every time step the temperature on model levels should be computed
from a temporal interpolation between the time steps in the input, and a vertical remapping to
the model levels (horizontal re-mapping is done at reading from input as described in section
11.5). For the vertical re-mapping it is necessary to have the level definition of the input fields
and the model; here we apply an air-mass weighted re-mapping that requires level definitions
in term of half-level pressures.

The name of the temperature variable in the model will be ’t’. This will be computed from a
variable ’t_met’ which holds the temperature field at the levels of the meteorological model
(as read from the input). For the re-mapping also half-level pressures for the model and the
meteorological input are needed. Therefore, in total 4 variables are needed in the model:

data . vars : . . . hp_met t_met hp t . . .

The temperature field is defined with:

data . t . long_name : temperature
data . t . un i t s : K
data . t . range : 0.0 In f
data . t . g r id type : c e l l
data . t . levtype : l e v e l s
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data . t . datatype : i n s t a n t _ f i e l d
data . t . c a l l : MassAverage ( hp_met , t_met , hp )

The variable is defined on grid cells and model levels, and is an instant field valid for a single
time step. At every time step, the values should be computed from a mass-weighted average
from the temperature at the meteorological levels, which also requires half-level pressure fields.

The temperature at meteorological levels is defined with:

data . t_met . long_name : temperature
data . t_met . un i t s : K
data . t_met . range : 0.0 In f
data . t_met . g r id type : c e l l
data . t_met . levtype : meteo_levels
data . t_met . datatype : i n s t a n t _ f i e l d _ s e r i e s
data . t_met . input : meteo . t

The data type is that of an instant series, since the field should be interpolated in time from a
time series of input fields. The input is described by rcfile keys that start with ’meteo.t’. The
level type ’meteo_levels’ forces the model to maintain the original levels as read from the
input files.

The input description of the temperature fields contains a single file format for all times, and
tells the model that the input time resolution is 3-hourly and that linear interpolation should be
applied in between:

meteo . t . input : 2012−01−01 00:00 , 2020−01−01 00:00 , e c f i l e . t
meteo . t . t i n t e r p : i n t e r po l a t i on= l i n ea r ; step =3; un i t s=hour

The file description looks like (see ’lotos-euros-meteo-ecwmwf.rc’ for the exact form):

e c f i l e . t . name : / data /ml−tropo20 / t_%{yyyymmdd} _3h . nc
e c f i l e . t . var : long_name=Temperature

For the definition of the half-level pressure fields that are used for the mass-averaging we refer
to the settings in ’lotos-euros-data.rc’.
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12 Boundary condition data

12.1 Introduction
The boundary conditions that should be read into the model are defined by a list of keywords:

l e . bound . types : cl im − i sak cl im −const cl im −logan data

Each of the keywords defines a data set from which boundary conditions should be read.
The tracers provided differ per set. If two sets contain data for the same tracer, the data
corresponding to a keyword later in the list will replace the data read before.

The implementation and configuration differs per set. Each of the sets has its own module in
the source code, for example:

le_bound_clim_emep . F90
le_bound_cl im_isak . F90
le_bound_cl im_logan . F90
le_bound_data . F90
:

The most general set is ’data’. The configuration of this set allows for input from time series
of netCDF files. In future, all boundary conditions will be read through this configuration, but
for the moment it is not used yet for ’older’ climatological boundary conditions. The most
important boundary conditions are those obtained from a global model (typically 3 hourly 3D
fields), or a boundary run from LE (1 hourly resolution 3D fields) and these are all read using
the ’data’ configuration.

12.2 Configuration of ’data’ boundary condition set
The processing of the ’data’ boundary conditions follows a number of stages, and is ilustrated
in Figure 12.1.

At the bottom, the original boundary condition data (blue) is obtained from for example a
global model The time series could be irregular by resolution and format.

This data is read from the files and interpolated in time (green). Typically the code will store
two original fields (for example valid for 00:00 and 03:00) and interpolate this lineary to a
target time (00:30). At this stage, the data is also regridded to the model resolution, but the
original levels are still kept.

In the next stage, also vertical regridding is applied (orange). This stage is seperate because
the vertical structure of the model is time dependent, and vertical regridding could therefore
not be done directly after reading.

In the final stage the actual boundary concentration fields (red) are formed. Eventually
those concentrations are formed from a linear combination of original fields, for example a
weight sum of dust modes that together form the ’fine’ fraction in the model.

The next sections illustrate step by step the configuration of these stages.
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Figure 12.1: Data flow of boundary conditions.
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12.2.1 Configuration for model variables
Figure 12.2 shows the top-level configuration of the boundary condition data. For each of
the tracers in the model, the configuration should have a definition of how to form these
concentrations from variables present in the boundary condition data. The example shows for
example that the fine dust fraction should use a linear combination of the original dust modes.

Figure 12.2: Top level configuration of boundary condition data.
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12.2.2 Configuration of boundary condition variables
Figure 12.3 shows the configuration of the boundary condition variables. Each of these variables
are stored in the ’LE_Data’ structures that are also used for the meteorological data; see chapter
11 for a description.

In the example, the variable ’cams_nrt_dust_f’ holds the fine dust mode read from the ’cams
nrt’ data set. As all boundary condition variables it holds concentrations on the model grid
cells and model levels. The vertical regridding is defined using a ’call ’ description that tells the
model to use an average over the original layers. This requires variables holding the original half
level pressures and concentrations; also these should be present as ’LE_Data’ variables. Here we
simply added a double underscore to the names to define variables on the original levels:

__cams_nrt_hp
__cams_nrt_dust_f

Figure 12.3: Configuration of regridded boundary condition variables.
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12.2.3 Configuration of boundary condition variables on origi-
nal levels
Figure 12.4 shows the configuration of the boundary condition variables on the original levels.
Also these are configured as ’LE_Data’ variables. In the vertical these variables are defined on
input levels. The variables should be read from input files; an ’input’ keyword is used for the
configuration of a series of input files.

Figure 12.4: Configuration of boundary condition variables on original levels.

12.2.4 Configuration of boundary condition files
The final configuration is the description of the input file names and variables to be read. Figure
12.5 shows a part of this configuration for the dust variable.

Figure 12.5: Configuration of boundary condition files and variables.
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13 Land use maps and
deposition parameters

13.1 Introduction
From LOTOS-EUROS v3.0.000, the land-use classification is based on a three-tiered land-use
approach: climate zone, land use, and vegetation types as tier 1, 2 and 3, respectively. In this
way, a coniferous tree in Norway can be distinguished from a coniferous tree in the Netherlands
by their climate zones (continental and temperate, respectively), and it is possible to define
model parameters specific to vegetation types. For instance, the deposition characteristics on
potato plants may be very different from those on maize, despite the fact that they share the
same land use class (arable land). See Manders and team [1] for details on this approach.

The three-tiered approach needs a land use map and a file with deposition parameters to
perform calculations of dry-deposition fluxes of gases and particles. The land use map is a
gridded map of fractions of all combinations of climate zone, land use class, and vegetation
type. The deposition parameter file contains all land-use-dependent parameters for the dry
deposition models for gases and particles. In this approach, the land use map is leading, i.e.,
each combination of the three tiers appearing in the map, should have a corresponding entry
in the parameter file. For instance, a grid cell in the temperate climate zone on the map may
contain arable land with maize on it. The deposition parameter file then should contain values
for all parameters for the combination arable land/maize in the temperate climate zone. If not,
the run will crash with an appropriate error message.

13.2 Data specification
The user needs to provide both the land use fraction map and the deposition parameters as
NetCDF files. The format of these files is described in the next section. In the configuration file
‘lotos−euros−expert.rc‘, the paths to these files have to be set:

l e . landuse . input . f i l e : / / path / to / landuse / fractionmap . nc
l e . depac_data . f i l e : / / path / to / depos i t ion / parameter f i l e . nc

where obviously the pathnames need to correspond to your data files. A standard land-use
fraction map and deposition parameter file are supplied with your OpenLE distribution. The
land-use map was created by combining the Köppen-Geiger climate zone map with ESA2015
and Corine2018, as described in Manders and team [1].

13.3 File formats
13.3.1 Land-use fraction map

A NetCDF file should be supplied with a gridded map of fractions of vegetation types. Each grid
cell covers a certain amount of land, which may belong to different climate zones and land use
classes and contain different types of vegetation. The format is as follows.
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netcdf tier123_example_map {
dimensions :
lu_types = 315 ;
s t r ing11 = 11 ;
long i tude = 1380 ;
l a t i t ude = 1560 ;
va r i ab l e s :
char lu_types ( lu_types , s t r ing11 ) ;
lu_types : long_name = ” land−use types ” ;
lu_types : un i t s = ”1” ;
f l o a t long i tude ( long i tude ) ;
long i tude : _ F i l l V a l u e = NaNf ;
long i tude : standard_name = ” long i tude ” ;
long i tude : un i t s = ” degrees_east ” ;
f l o a t l a t i t ude ( l a t i t ude ) ;
l a t i t ude : _ F i l l V a l u e = NaNf ;
l a t i t ude : standard_name = ” l a t i t ude ” ;
l a t i t ude : un i t s = ” degrees_north ” ;
f l o a t l u _ f r a c t i on ( lu_types , l a t i tude , long i tude ) ;
l u _ f r a c t i on : _ F i l l V a l u e = NaNf ;
l u _ f r a c t i on : long_name = ” land−use f r a c t i on ” ;
l u _ f r a c t i on : un i t s = ”1” ;

/ / g loba l a t t r i bu t e s :
: Conventions = ”CF −1.6” ;

}

The file has the following dimensions:

lu_types and string11 are the dimensions of the list of land use/vegetation combinations.
string11 is always 11 characters long, since each LU/vegetation type is a combination of 3
three-letter abbreviations separated by underscores

longitude and latitude are the dimensions of the cell center coordinates

The variables are as follows.

lu_types(lu_types, string11): Abbreviation of the combination climate zone, land use class
and vegetation type. For instance, the tag tmp_ara_whw represents the temperate climate
zone, arable land as land use class and winter wheat as vegetation.

longitude(longitude). latitude ( latitude ): Cell center coordinates

lu_fraction (lu_types, latitude , longitude): The fraction of the cell at ( latitude , longitude) that
is taken up by the land use/vegetation combination lu_types.

Notes

the sum of all fractions over lu_types should equal 1 in each cell. If it is lower than 1, part of
the surface area of the cell will not be available for deposition, if it is higher than 1, part of
the surface area of the cell is counted double (i.e., there can be no overlap). Both situations
lead to errors in the calculation of deposition.

the file should adhere to the NetCDF Climate and Forecast Metadata Conventions version
1.6 ([2], [3]).
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13.3.2 Deposition parameter file
A NetCDF file should be supplied with all parameters for the dry deposition models for gases
(DEPAC, Zanten et al. [4]) and particles [5]. Most of the parameters (as shown below) are
a function of climate zone and land use/vegetation combination, a minor amount is also a
function of the species that deposits. The format is as follows (abbreviated list for the sake of
conciseness).

netcdf example_deposit ion_parameter_f i le {
dimensions :
cl imatezone = 7 ;
landuse_vegetat ion = 69 ;
spec ies = 21 ;
s t r i ng3 = 3 ;
s t r ing15 = 15 ;
landuse_c lass = 13 ;
s t r ing30 = 30 ;
s t r i ng7 = 7 ;
s t r ing50 = 50 ;
s t r ing10 = 10 ;
va r i ab l e s :
double A_bio_no ( climatezone , landuse_vegetat ion ) ;
A_bio_no : _ F i l l V a l u e = NaN ;
A_bio_no : long_name = ”A_bio_no parameter fo r temperature dependence...

... of NO emissions per land use c lass ” ;
A_bio_no : un i t s = ”m” ;
.
.
.
int64 seasa l t _ f l ag ( cl imatezone , landuse_vegetat ion ) ;
s easa l t _ f l ag : long_name = ” Flag − to determine seasa l t ; 0 :No seasa l t ...

... ; 1 : Can emit seasa l t ” ;
s easa l t _ f l ag : un i t s = ”−” ;

/ / g loba l a t t r i bu t e s :
: author = ”Leon Geers ” ;
: i n s t i t u t i o n = ”TNO” ;
: t i t l e = ”Land Use and Cl imate Dependent Depos i t ion Parameters ” ;
: Conventions = ”CF −1.6” ;
: NCO = ”netCDF Operators vers ion 5 .2 .4 (Homepage = http : / / nco . s f . ...

...net , Code = http : / / g ithub . com/ nco / nco , C i t a t i on = 10.1016/ j . ...

...envsoft .2008.03.004) ” ;
: h i s t o r y = ” . . . ” ;

}

The file has the following dimensions:

climatezone and string3 for the climate zone dependency of parameters. The latter dimension
is always of size 3, since the climate zone dimension is a three lettered abbreviation. The
climate zone names are max. 15 characters (dim. string15).

landuse_vegetation and string7 for the land use/vegetation dependency of parameters. Land
use/vegetation combinations are represented with two three letter abbreviations separated
by an underscore (e.g., ara_def for the default vegetation of arable land). The names of the
land use/vegetation combinations are max. 50 characters (dim. string50).

species and string10 for species dependency of parameters. The species names each takes
up max. 10 characters.
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Table 13.1: Variables defined in the deposition parameter file.

Parameter Dimensions Description Unit
landuse_class_names landuse_class The full name of the land use class
climatezone_names climatezone The full name of the climate zone
landuse_vegetation_names landuse_vegetation The full name of the land use/vegetation combination
A_bio_no climatezone, landuse_vegetation A_bio_no parameter for temperature dependence of NO emissions per land use class m
A_lu climatezone, landuse_vegetation A_lu parameter for Zhang model per land use class.
alfa_lu climatezone, landuse_vegetation Alfa_lu parameter for Zhang model per land use class.
alpha climatezone, landuse_vegetation Alpha value for light correction of stomatal resistance m2 W−1

base_coeff_no climatezone, landuse_vegetation base_coeff_no parameter for temperature dependence of NO emissions m
D_EGS climatezone, landuse_vegetation Shift of End of Growing Season deg−1

D_SGS climatezone, landuse_vegetation Shift of Start of Growing Season deg−1

Diffusivity species Diffusivity of species in air at 298K m2 s−1

EGS_50 climatezone, landuse_vegetation End of Growing Season at 50 deg lat
ELEN climatezone, landuse_vegetation Length of End Phase of Growing Season
fallow_flag climatezone, landuse_vegetation Flag - to determine fallow; 0:No fallow; 1:Fallow under circumstances; 2:Always fallow
fmin climatezone, landuse_vegetation Minimum correction factor for stomatal resistance
fst_th_Y climatezone, landuse_vegetation O3 stomatal flux threshold Y nmol s−1 m−2

gamma_lu climatezone, landuse_vegetation Gamma_lu parameter for Zhang model per land use class.
gamma_soil_c_fac climatezone, landuse_vegetation Gamma correction factor for calculating soil compensation point
gamma_soil_default climatezone, landuse_vegetation Gamma parameter for calculating soil compensation point
gamma_stom climatezone, landuse_vegetation Gamma parameter for calculating stomata compensation point
gs_max climatezone, landuse_vegetation Maximum leaf stomatal conductance for ozone m s−1

ice_flag climatezone, landuse_vegetation Flag - to determine ice; 0:No ice; 1:Ice under circumstances; 2:Always ice
ipar_snow species Parametrization type of Rc above snow
LAI_max climatezone, landuse_vegetation Maximum Leaf Area Index m2 m−2

LAI_min climatezone, landuse_vegetation Minimum Leaf Area Index m2 m−2

Ld climatezone, landuse_vegetation Cross wind leaf dimension (Simpson, 2007) per land use class. m
R_inc_b climatezone, landuse_vegetation In-canopy resistance parameter b
R_soil climatezone, landuse_vegetation, species Soil resistance s m−1

R_soilfrozen species Soil resistance for frozen soil s m−1

R_soilwet species Soil resistance for wet soil s m−1

SAI_a climatezone, landuse_vegetation SAI = SAI_a * LAI + SAI_b
SAI_b climatezone, landuse_vegetation SAI = SAI_a * LAI + SAI_b
SAI_b_dep climatezone, landuse_vegetation SAI dependent on LAI + Growing Season?
SGS_50 climatezone, landuse_vegetation Start of Growing Season at 50 deg lat
SLEN climatezone, landuse_vegetation Length of Starting Phase of Growing Season
smi_level climatezone, landuse_vegetation Level for soil-moisture-index.
temp_coeff_no climatezone, landuse_vegetation temp_coeff_no parameter for temperature dependence of NO emissions m
Tmax climatezone, landuse_vegetation Maximum temperature for temperature correction of stomatal resistance oC
Tmin climatezone, landuse_vegetation Minimum temperature for temperature correction of stomatal resistance oC
Topt climatezone, landuse_vegetation Optimum temperature for temperature correction of stomatal resistance oC
vpd_max climatezone, landuse_vegetation Maximum vapour pressure deficit kPa
vpd_min climatezone, landuse_vegetation Minimum vapour pressure deficit kPa
water_flag climatezone, landuse_vegetation Flag - to determine water; 0:No water; 1:Water under circumstances; 2:Always water
z0_wind_dep climatezone, landuse_vegetation Roughness length for heat and trace gases dependent on wind?.
z0dust_emis climatezone, landuse_vegetation Roughness length for dust emissions per land use class. m
z0h_fallow climatezone, landuse_vegetation Roughness length for heat and trace gases on fallow land. m
z0h_snow_surface climatezone, landuse_vegetation Roughness length for heat and trace gases on snow. m
z0m_fallow climatezone, landuse_vegetation Roughness length for momentum on fallow land. m
z0m_snow_surface climatezone, landuse_vegetation Roughness length for momentum on snow. m
zcanopytop_fallow climatezone, landuse_vegetation Canopy top height per land use class on fallow land. m
arable_flag climatezone, landuse_vegetation Flag - to determine arable; 0:No arable land; 1:Arable land
seasalt_flag climatezone, landuse_vegetation Flag - to determine seasalt; 0:No seasalt; 1:Can emit seasalt
desert_flag climatezone, landuse_vegetation Flag - to determine desert; 0:No desert area; 1:Desert area
h climatezone, landuse_vegetation Height of surface elements m

landuse_class for the land use class names. The dimension is a three lettered abbreviation
(dim. string3) and the land use class names themselves have a maximum number of 30
characters (string30).

The variables are given in Table 13.1. For each parameter, the dimensions are listed (the string
length was not included for conciseness), a description is given and the units, where applicable.
The description and units originate from the variable attributes of each parameter in the NetCDF
file.

Notes

For all climate zones and land use/vegetation combinations that are present in the land use
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fraction map, there should be values for each parameter in the deposition parameter file as
well. If any of them are missing, LOTOS-EUROS will crash. It is not a problem if there are
land use/vegetation types represented in the deposition parameter table that do not have
any fraction defined in the map. These will simply remain unused.

The format allows adding new land use classes and vegetation types.

Each land use class needs to have a default vegetation represented by the abbreviation
’def’ in the dimension and ’Default’ as the vegetation name. The values of each parameter
for the default vegetation are the values representing an average for all vegetation in
the land use class.

In case a new vegetation type is added, it should be classified under a specific land use
class. Initially, values of parameters that are not available can be copied from the default
vegetation type of that particular land use class.

Parameter values for specific climate zones and land use/vegetation combinations can be
retrieved from literature. The values in the current file are mostly based on the defaults from
DEPAC ([4]) and valid for Northwestern Europe. A table of some of the parameter values is
given in the LOTOS-EUROS Reference Guide ([1]).

The file should adhere to the NetCDF Climate and Forecast Metadata Conventions version
1.6 ([2], [3]).
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14 Generation of chemistry
code

14.1 Overview
With the number of tracers growing throughout the years it became more and more difficult to
manage the source files solving the chemistry. In addition, there was no easy way to quickly
enable or disable some tracers or chemical reactions without having to change the source code.

It was therefore decided to let some of the tracer and chemistry related files be generated by
the scripts, based on settings in the rcfile. The scripts used to generate the source files start
with the name ’genes’ (GENErate Sources), and this name is also used in the settings keywords.

The generated files are:

’le_indices . inc’, an include file with index parameters, names, units, and other settings for all
tracers;

’le_chem_work.F90’, a module with routines that fill the reaction rates and perform a single
step of the iteration step in used by the chemistry solver.

Default versions of the generated source files are included in the base source. Editing won’t
have any effect; instead change the rcfile settings or the tables that were used to generate
them, as explained below.

The new source files are generated in the build directory. For debugging it might be useful to
take a look at the generated files after creation; this is facilitated by the rcfile setting:

genes . show .command : ned i t $ { genes . f i l e s } &

In this case, the new files are loaded into the ’nedit’ editor; the ampersand ensures that the
editor keeps running as background process while the rest of the model setup continues.

14.2 Chemistry Scheme
LOTOS-EUROS includes chemistry schemes CBM4 and CBM7. Users can choose the chemistry
scheme in the configuration file ‘lotos−euros−expert.rc‘.

! set genes . chemistry_scheme to cbm4, cbm7, or empty
genes . chemistry_scheme : cbm4

The choice made here will determine which tracer and reaction tables are read in via switches
in the ‘lotos−euros−expert.rc‘-file. In addition to the tracer and reaction tables, after CBM7 is
chosen, the model reads in files with photolysis parameters and reaction types.
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14.3 Tracer and chemistry properties
An important part of the configuration is done through so-called ’properties’. Table 14.1 shows
some of the currently supported properties; their use will be explained later on. A list with
supported properties is maintained in the ‘lotos−euros−expert.rc‘-file which is used to check the
settings made by the user; see this expert rcfile for a complete list of all properties.

Tracer chemical properties
cbm4 tracers/reactions of CBM4 scheme
cbm7 tracers/reactions of CBM7 scheme
sulphur sulphur-only scheme (SO2 and SO4a, OH read in)
methane methane-only scheme (CH4, OH read in)
co2 CO2 tracer
sf6 SF6 tracer
nmvoc non-methane volotile organic carbon
radical radical
ppm primary particulate matter
ec elementary carbon
pom primary organic matter
sia secondary inorganic aerosols
seasalt sodium aerosols representing seasalt
dust dust aerosols
m7 M7 aerosol scheme
vbs vbs_cg vbs_soa for secondary organic aerosol modelling
basecation base-cat-ion aerosols
hm heavy metals
accum accumulated species
biascorr bias corrected species
aerosol aerosol tracer
fine_mode fine mode aerosol
coarse_mode coarse mode aerosol
all_modes total aerosol collecting all size modes
in-cloud used to select implicit in-cloud chemistry reactions

Table 14.1: Tracer and chemistry properties.

To select the tracers and reactions that should be included in a simulation, a list with properties
should be specified in the rcfile. Default selection in the main rc file is:

genes . chemistry_scheme : cbm4
genes . group . se lected : $ { genes . chemistry_scheme } s i a ppm ec pom ...

... seasa l t dust accum

This is used to select the appropriate lines from the tables described below.

14.4 Tracer table
The core of the tracer selection is a table with all supported tracers. A separate tracer table in
.csv format is included in the model for CBM4 and CBM7 chemistry schemes.

base /000/ data / tracers_cbm4 . csv
base /000/ data / tracers_cbm7 . csv

The content looks like:
name , desc r i p t i on , un i ts , formula , p roper t ies , H−law , . . . , r s ca l e
NO , N i t r i c oxide , ppb , N + O , cbm4 , 0 .01 , . . . , 1
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O3 , Ozone , ppb , O 3 , cbm4 , −2415.0 , . . . , 1
ALD , Aldehyde , ppb , C 2 + R , cbm4 nmvoc , 6300.0 , . . . , 1
PPM_f , prim . part .mat . f i n e mode, ug /m3, R , ppm aerosol fine_mode , 0 .0 , . . . , ...

...−999
:

For each supported tracer, the following values should be set:

name Short name, used in index variables i_O3 etc.

description Longer description, only used in comments in generated source files.

units Units of the tracer in the model; usually ’ppb’ for gasses, and ’ug/m3’ for aerosols.

formula Chemical formula (if possible). For some applications (labeling) it is useful to have
at least the number of C, N, and S atoms in a molecule; for the remainder, use the symbol
’R’ .

properties List with all tracer properties (table 14.1) that are appied to this tracer.

H-law,T-fact,Reactivity,drydeptype,diffc,...,rscale Tracer dependent parameters used for
deposition calculation

To be enabled in the simulation, a tracer should have at least one of the selected properties.

14.5 Reaction table
14.5.1 CBM4

Chemical reactions for the CBM4 chemistry scheme are also specified in a text file. The default
table is available as:
base /000/ data / reactions_cbm4 . csv

The content looks like:
labe l , reactants , products , rate express ion , p rope r t i e s
R1 , NO2 , NO + O3 , 1.0 x <NO2_SAPRC99> , cbm4
R3 , O3+NO , NO2 , 2.64 @ 1450 , cbm4
:
RH1f , SO4a_f + N2O5 , SO4a_f + 2*HNO3, rk_het ( ireac_N2O5_NH4HSO4a_f ) , cbm4 s ia
:

For each reaction, the following values are specified:

label: A short label for the reaction, used in parameter names.

reactions: Tracers reacting with each other; tracer names following the tracer table.

products: Tracer products.

rate expression: Description of the reaction rate, see also Appendix A in the Reference Guide.
See the comment in the top of the reaction table for how the expression is expanded. Some
reaction rates are set by a special routine in the code, for example for the heterogeneous
reaction ’RH1f’ in the example lines above.

properties: List with all tracer properties (table 14.1) that that should be present to have
this reaction enabled.

Reactions are only enabled if ALL of its properties are selected in the rcfile. Thus, reaction ’RH1f’
of the above example is only enabled if both ’cbm4’ and ’sia’ tracers are selected.
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14.5.2 CBM7
Chemical reactions for the CBM7 chemistry scheme are also specified in a text file. The default
table is available as:
base /000/ data / reactions_cbm7 . csv

Relevant parts of this file are columns A:W, with two skipped rows. This content of the subsection
looks like:
Number , ( l abe l ) , ( rate ) , ( empty ) , Type , Order , 1 , . . . 12 , Photo lys i s , ...

...groups
1 , NO2 = NO + O , NO + O3 , 0.0063 , . . . , −1 , 1 , 0 , . . . , , 0.0063 , ...

...cbm7
2 , O2 + O + M = O3 + M , 6.11E−34 , . . . , 3 , 3 , 6E−34 , . . . , , , ...

...cbm7
:

For each reaction, the following values are specified:

Number: Reaction number

label: Full reaction equation, with products on the left side and reactants on the right side

rate: Pre-calculated reaction rate (ignored)

type: Reaction type of the equation. An overview of the reaction types and their equations
can be obtained from the rate documentation in

base /000/ data / reactions_cbm7 . x l s x

Reaction type -1 denotes a photolysis reaction.

1..12: Reaction parameters used, refer to Table 3-3b in rate documentation as stated above.

Photolysis: Parameter used in photolysis equation

groups: List with all tracer properties (table 14.1) that that should be present to have this
reaction enabled.

Columns not mentioned here are not used in the model and are only left for reference.

Reactions are only enabled if ALL of its properties are selected in the rcfile. Thus, reaction ’RH1f’
of the above example is only enabled if both ’cbm7’ and ’sia’ tracers are selected.

14.6 Specification of table files
The name of the tables file should be specified in the rcfile. The default setting in the rcfile for
CBM4 chemistry scheme is:
genes . t r ace r s . f i l e : . . / data / tracers_cbm4 . csv
genes . react ions . f i l e : . . / data / reactions_cbm4 . csv

And for CBM7 chemistry scheme is:
genes . t r ace r s . f i l e : . . / data / tracers_cbm7 . csv
genes . react ions . f i l e : . . / data / reactions_cbm7 . csv

In this case, the tables are found in the ’data’ sub-directory next to the ’src’ sub-directory in the
build directory, thus:
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<rund i r >/ bu i l d / data /

These table files are copied from the base directory, and eventually replaced by project specific
versions. Therefore, to test a new table, simply put it in the ’data’ sub-directory of a project
directory. Alternatively, specify an absolute path in the ‘lotos−euros−expert.rc‘-file settings.

14.7 Tracer indices and arrays
The information on the selected tracers is used to create the file ’le_indices . inc’. This file is
included into ’le_indices .F90’, which provides the module ’Indices’. Through this module, the
user can access the generated entities; see the comment in top of ’le_incdices .F90’ for their
definition.
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15 Labeling

15.1 rc-file
To use the labeling method switch, set the labeling flag to True

!
my. with . l abe l i ng : True

Define number of labels (default labels are added automatically)

!
l abe l s . n labe l : 2

Define which tracer to be labelled. Note that in a group, all tracers should be labelled

!
l abe l s . l abe l l ed . specs : $ { N_tracers } $ { S_ t racers } $ { unreac t i ve_ t race rs }

15.2 Code
In module ’SA_Labeling.F90’, the labels are defined hardcoded. Subroutine ’SA_Label_Definition’ is
use for this.

Step 1:

Define the names of the labels and define short names with maximum of 10 characters to get
proper output for Grads-ctl files.
Note number of defined labels should be equal to number defined in rc-file. In the example,
labels are defined for Countries (Netherlands and abroad). Also example lines for emission-
sector labeling are provided.

!
SA_Label_Names (1 ) = ’NLD ’
SA_Label_Names (2 ) = ’ Abroad ’
! SA_Label_Names ( . . ) = ’ . . ’

Step 2:

Match incoming emissions to the label numbers. Each incoming emission must be attached to
a label

Example for countries (with label on Netherlands and Abroad)

i f ( i count ry == −999 ) then
! undefined count r ies
de f_ labe l = 2
e lse i f ( Emis_countr ies ( i s e t )%emis_country_names ( i count ry ) == ’NLD ’ ) then
def_ labe l = 1
e lse
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def_ labe l = 2
end i f

Example for sectors (with label on Industry and others)

i f ( Emis_Sectors ( i s e t )%emis_sector_names ( i c a t ) == ’ Industry ’ ) then
def_ labe l = 1
e lse
def_ labe l = 2
end i f

15.3 Output
From the labeling module, extra outputfiles are generated. (labelled-conc-sfc, labelled-cond-
3d). Properties of those files are identical to matching concentration files described in Section
16, with an extra dimension ’label’ to display the concentration resulting from each predefined
label.
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16 Model output

16.1 Output frequency
The user should specify the ’output’ time-step in the rcfile:

! output time step in minutes :
t imestep . output : 60

A typical value is 1 hour. The model will arrive at every multiple of this output-time-step and
put out simulated values.

16.2 Gridded output
The output of gridded fields is controlled by the rcfile. The supported output types are described
below. It is possible to put out files of the same type but with different properties, for example
files with concentration fields at the surface for many tracers, and files with 3D fields for some
selected tracers only.

The gridded output is written to NetCDF files. By default the files are structured following the
CF-conventions. GrADS description files are added for visualization (see section 19.1).

16.2.1 Concentration fields
For output of concentration fields the following properties could be set:

which tracers to be put out:
model tracers;
accumulated tracers: total PM10, total carbon, etc; see indices .F90 for the supported
accumulation;
bias corrected tracers;
all-advected; all tracers which are advected in the model, used for nesting approach

vertical axis:
model levels, including the concentration at 2.5m (which is the measurement height,
denoted as surface concentrations) and the top boundary layer;
heights relative to orography;
elevations relative to sea-level;

whether to put out the cell height too;

temporal resolution (typically fields are put out every hour);

collection per file: either daily or instantaneous;

horizontal coverage: by default the whole grid, but optionally:
bounding box to limit the horizontal area, for example to save storage space while
producing boundary conditions for a zoom run;
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halo cells (boundary conditions values);

Template settings for output files with surface concentrations (’conc−sfc’) ,3D fields at model
levels (’conc−3d’) ,and 3D fields used as boundary conditions (’conc−bound’) are available in the
output rcfile.

16.2.2 Tracer total columns
Total columns could be put out for comparison with satellite observations. Note that this only
includes the model layers now; the top boundary is not included yet, since usually there is no
idea about its height. The following properties could be set:

which tracers to be put out (normal or accumulated);

temporal resolution (typically fields are put out every hour);

collection per file: either daily or instantaneous.

16.2.3 AOD columns
The Atmospheric-Optical-Depth is computed from the tracer concentrations and put out as
columns.

16.2.4 Model data fields
For output of various othermodel data fields (e.g. meteorological fields), the following properties
could be set:

which fields to be put out: meteo variables, stability fields, …

vertical axis:
model levels, including the surface level and the top boundary layer which are for most
fields a copy of the nearby model layer;
heights relative to orography;
elevations relative to sea-level;

temporal resolution (typically fields are put out every hour);

collection per file: either daily or instantaneous.

Template settings for output files with surface data (’meteo−2d’) and with 3D fields at model
levels (’meteo−3d’) are available in the output rcfile.

16.2.5 Emission fields
The total emission for a certain tracer (or accumulated tracer) could be put at at regular times.
The array that is put is ’emis_a’ which contains for each tracer the total emission during the
current (next) time step, independent of the source (anthropogenic, biogenic, sea-spray, etc).
The following properties could be set:

for which tracers the emissions should be put out, including accumulated tracers;

vertical axis: either model layers or the total per grid cell;

temporal resolution (typically fields are put out every hour);

collection per file: either daily or instantaneous.
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16.2.6 Dry and wet deposition
The dry- and/or wet-deposition budgets per output time step could be put out with the the
following properties:

for which tracers the deposition should be put out, including accumulated tracers;

vertical axis: either model layers or the total per grid cell;

temporal resolution (typically fields are put out every hour);

collection per file: either daily or instantaneous.

16.2.7 Deposition parameters
Deposition variable such as resistances and deposition velocities could be put out with the
following properties:

for which tracers the variables should be put out (if tracer dependent);

the landuse classes for which variables are valid;

vertical height, for example needed for dry deposition velocities.

16.2.8 Daily budgets
The daily budgets are updated every time step and are put out at midnight. The following
budgets could be put out:

dry deposition flux of SOx, NOx, or NHx;

wet deposition flux of SOx, NOx, or NHx;

ozone dry deposition flux per landuse;

ozone daily maximum;

average NH3 concentration in soil.

16.3 Satellite validation output
For special purposes also the following fields could be produced:

Simulation of OMI NO2 columns.

Simulation of MODIS AOD columns.

The horizontal model grid is used to sample the satellite pixels. This output therefore requires
that information on the satellite pixels is available.
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16.4 Observation simulation
The standard method to produce simulations of concentrations at observation sites is to extract
them from the (2D or 3D) gridded output.

An alternative is to use the MAORI (Model And Output Routine Interface) routines. The MAORI
interface is configured via the rcfile by specification of a table file with station location and
settings to define the simulated tracers etc. This is mainly used in the Kalman Filter context to
simulate state values at observation sites; in the default model the code is present, but the use
is not fully supported yet.

16.5 Emission summary
A summary of the emissions is written automatically to the output directory. Currently this
is only supported for anthropogenic emissions read from files in TNO format. Since these are
year-dependent, the summary is written for every year that the simulation covers. A summary
consists of four comma-separated-value file (plain text): a list of the emission categories, a
list with country codes and names, a table with total emissions for a component per country,
and similar per country and emission category. The file is useful for verification of the emission
input.
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17 Restarting a run

When a run has crashed at some point due to some problem, the restart file can be used to
restart the simulation at the day where it ended, without the need for spin-up. To use this
option, change the date of the simulation in the main rc-file to the date of the last restart file.
Thus, when the last restart file is:

LE_mysimulation_state_20120823_0000 . nc

then the day and time for the simulation should be:

2012−08−23 00:00:00

Enable startup from a restart file by the setting:

l e . r e s t a r t : T

and make sure that the path and runid of the restart file are defined correctly.

It is safer but not mandatory to move the existing output directory to a different path (e.g.
output2). Be aware that the .ctl files for GRADS (see section 19.1) are re-initiated so that they
start now with the time stamp of the restart. This is easily modified in a text editor when one
recombines the data from the original simulation and the restarted simulation.
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18 Parallelization

LOTOS-EUROS has two options to employmultiple processors: domain decomposition using MPI,
and OpenMP. These two do not exclude each other, but in practice the domain decomposition
is preferred because it scales better when increasing the number of processors.

When running with MPI (domain decomposition) it is also possible to assign dedicated processor
to copy input files from an archive (slow) to a local drive (fast); on some systems, this could
strongly decrease the run time.

18.1 Domain decomposition
With domain decomposition, the model grid is divided into a number of sub-domains, and each
sub-domain is assigned to another processor (figure 18.1). The processors use the MPI library
to communicate between the domains, in particular to fill the boundary arrays using simulated
concentrations from other processors.

Figure 18.1: Illustration of domain decomposition.

18.1.1 Configuration
To run with domain decomposition, enable the MPI flag, specify the number of MPI tasks (sub
domains), and specify how to decompose into sub-domains in x and y direction:

! enable MPI ( True | Fa lse ) ?
par . mpi : True

! number of mpi tasks :
par . ntask : 4

! decomposition :
domains . x : 2
domains . y : 2

18.1.2 MPI compiler
The MPI library that is used for communication is linked with the model by using a special
compiler wrapper around the native compiler. Popular MPI libraries are OpenMPI and MPICH,
but also the Intel compiler suite usually comes with an MPI installation.
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The name of the compiler wrapper that is used by the MPI library should be specified in the
machine settings:

! compi ler wrappers fo r MPI :
mpi . compi ler . f c : mpifort

18.1.3 Logging and error messages
Each sub-domain writes standard output to a seperate log-file in the output directory. The
domains are numbered sequentially starting from zero, and this number is part of the per-sub-
domain log file name:

output / le −log −d00 . out
le −log −d01 . out
:

When an error occurs, it always happens first in just one of the subdomains. The error message
is therefore in just one of the log-files only, since the processes handling the other sub domains
are simply terminated. To see which processor received the error, check the content of the error
file in the run directory:

−−−[ lotos −euros_run . e r r ]−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
MPI_ABORT was invoked on rank 3 in communicator MPI_COMM_WORLD
with errorcode 1 .
. . .

In this example, the error was detected on processor 3.

18.2 I/O task
Reading input files (meteo, boundaries) could take a lot of time in case the file system is rather
slow. On computing servers there is often a small but very fast disk available directly on the
node, for example an SSD storage. When running with MPI (domain decomposition) it is possible
to assign an extra processor to copy input files from an archive (slow) to the local drive (fast),
which could strongly decrease the run time.

Figure 18.2 illustrates the allocation of processors to the model domains and to the i/o task.
The root domain asks the i/o processor to:

check if selected input data for today is already available on the fast disk (here /tmp), and if
not, copy it from the archive;

copy the data from the archive for tomorrow;

remove the data from yesterday from the fast disk, otherwise the fast disk might run out of
space.

The copy and clean-up actions are performed by a script that is called from the i/o task. The
script will install the input data for tomorrow on the fast disk, while the model is still simulating
today; when the model arrives at tomorrow, the input data is already fast accessible.

To enable the i/o task, enable the following flag in the top-level settings:

! c a l l i n s t a l l a t i o n s c r i p t every day?
l e . i o . apply : T
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Using this flag, the machine specific settings should ensure that a job allocates an extra
processor, such that the total number of MPI tasks is one more than the number of requested
model sub-domains. For the TNO/HPC3 settings this is already configured.

The expert settings have configurations to ensure that the required input data for a standard
run (meteo, boundary conditions, fire emissions) are installed on the fast disk. Here we shortly
describe the most important settings that might require fine tuning in case of a non-standard
simulations. The data sets to be copied temporary to the fast storage are identified by a list of
keywords:

! l i s t of data sets to be i n s t a l l e d :
l e . i o . i n s t a l l . sets : meteo gfas mc−bounds

In case of zoom run, also the boundary output from the outer simulation should be copied:

! l i s t of data sets to be i n s t a l l e d fo r zoom run :
l e . i o . i n s t a l l . sets : meteo gfas mc−bounds le −bounds

For each of these datasets, define where to copy the data from (the archive) and where to copy
it to; the values are take from keys that should be defined in the machine specific settings:

! i n s t a l l a t i o n d i r e c to r y ; empty fo r cur rent :
l e . i o . i n s t a l l . meteo . d i r : $ {my. l e i p . d i r }
! a rch ive path with f i l e s to be i n s t a l l e d :
l e . i o . i n s t a l l . meteo . arch : $ {my. l e i p . arch }

Then provide a list of files that should be copied; for files including a time stamp the names
should include templates for year/month/day/etc. For the meteo files this looks like:

! f i l e s to be i n s t a l l e d :
l e . i o . i n s t a l l . meteo . f i l e s : ECMWF/od / i f s /0001/an / s f c / F1280 /0000/* . nc \
ECMWF/od / i f s /0001/ fc / s f c / F1280/%Y /* _%Y%m%d_1h . nc \
ECMWF/od / i f s /0001/ fc / L137_CL42 / F1280/%Y /* _%Y%m%d_3h . nc

18.3 OpenMP
Before the introduction of the domain decomposition, the LOTOS-EUROS model used OpenMP
to employ multiple processors. The domain decomposition usally scales much better with

Figure 18.2: Allocation of processors for model domains and dedicated I/O task.
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increased number of processors, but on some architectures it might still be beneficial to combine
it with OpenMP.

18.3.1 Pragma’s
The OpenMP standard uses special comments called pragma’s in the source file to tell the
compiler that multiple processors could be used for a certain piece of code:
!$OMP pa r a l l e l
!$OMP do
do j = 1 , ny
do i = 1 , nx
! apply per g r i d c e l l :
c a l l Something ( c ( i , j , : , : ) , . . . )
end do ! i
end do ! j
!$OMP end do
!$OMP end pa r a l l e l

18.3.2 Enable OpenMP
To run on multiple threads, enable the flag and specify the number of available threads:
! enable OpenMP ( True , Fa lse ) ?
par . openmp : True
! number of threads :
par . nthread : 0

It is our experience that usually 3 to 4 is a good choice, more than 8 will not lead to a further
decrease of total runtime.

18.4 Timing
The time spent on different tasks in the model is continuously measured.

A timing profile is written to a text file with extension ’ . prf’ in the output directory. In the header
of this file, a pretty print of the absolute and relative time spent on a task and its sub-tasks is
shown:
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−
timer system_clock (%)
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− −−−−−−−−−−−− −−−−−−−−−
. . .
model time loop 11504.66
time step output 712.27 ( 6.2 %)
time step setup 1223.58 ( 10.6 %)
adjust 49.89 ( 0.4 %)
advect ion 573.52 ( 5.0 %)
chemistry 68110.19 ( 59.3 %)
v e r t i c a l d i f f u s i on 1144.94 ( 10.0 %)
dry depos i t ion 217.74 ( 1.9 %)
sedimentation 24.93 ( 0.2 %)
wet depos i t ion 23.61 ( 0.2 %)
emission 35.59 ( 0.3 %)
other 679.41 ( 5.9 %)
. . . .
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19 Post processing and
visualization

Post-processing and visualization of the model output is often very project and user specific.
The netCDF file format compiliant with conventions ensures that many packages can be used
(e.g. Matlab, Python, IDL). In this chapter we give an overview of the available standard tools,
which will help a user with the first steps.

19.1 GrADS
The Grid Analysis and Display System (GrADS) is an interactive desktop tool that is used for
easy access, manipulation, and visualization of earth science data. It is very suitable to quickly
browse through the data without scripting and perform a fist screening of the output.

Note that GrADS cannot handle packed output.

19.1.1 Control files
LOTOS-EUROS supports the use of GrADS by adding control files ( . ctl ) to the output directories
that are used by GrADS to read the output and define the correct grid, time range, etc.

19.1.2 Running
If GrADS is installed, use the following command to start:

grads

TNO Public 64/72

http://www.iges.org/grads


TNO Public TNO 2025 R10850

Figure 19.1: Screenshot of a GrADS graphics window with a snapshot of modelled PM10 concentrations and
timeseries of PM10 and PM2.5 in gridcell corresponding to Utrecht (Netherlands)
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20 Tools

The LOTOS-EUROS ’tools’ are additional software packages next to the model.

For OpenLE, the tools are found in the ’tools’ directory next to the base source (see section
4.2).

20.1 Create files with ECMWF meteorological data
Scripts to extract OpenLE meteorological data from the ECMWF archive, and to transfer the files
to your local computer are present in:

too l s /meteo /

An ECMWF member state account is required to run the scripts.

20.1.1 Extract data from ECMWF archive
The best (fastest) way to extract meteorological data from the ECMWF archive is to retrieve it
from the MARS archive on the member state server (ecgate). After copying the ’tools/meteo’
directory to ecgate, edit and run the following script to create data files:

. / b in /OpenLE−meteo−ecmwf

This will first retrieve files from MARS in grib format, and then convert to netcdf. The standard
grib_to_netcdf tool at ecgate does not provide completely CF-compliant files, and therefore
small additional modifications are needed.

Variables that are originally accumulated from the start of a forecast are converted to averages
over an interval. For example, precipitation fields are originally stored in ’m water equivalent’
since start, but converted to ’m/s’ average during a (3 hourly) time interval.

The data volume is reduced significantly by combining vertical layers. How to combine levels
is defined in the header of the script; for OpenLE we created files with about 20 layers in the
troposphere. To combine the levels a Fortran program is compiled that is present in the ’src’
directory. Compilation settings are defined in:

rc / openle−meteo . rc

Extracting data could take a long time! Especially fields on ecmwf model levels (temperature,
wind) are expensive to extract. The ecgate server does not allow jobs to run in foreground
for longer than 30 minutes; longer jobs should be committed to the queue system. Use the
following script to create a sequence of jobs that will be submitted one by one to the queue
system:

. / b in /OpenLE−meteo−ecmwf− jobs

Edit this file to set the time range and select the long/short jobs. To see which jobs are currently
running on your account, use:
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squeue −u $USER

The job-id number in the first column could be used to cancel a running job:

scancel <JOBID>

20.1.2 Transfer meteo files from ecgate to local computer
Meteo files produced at ecgate could be transferred to a local computer using the script:

. / b in /OpenLE−meteo−get

The script uses the ’ECaccess’ tools to scan a source directory on ecgate and get the files to the
local machine if not present yet. Edit the settings in the top of this script to change locations
etc.
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21 Coding conventions

How should new parts of code be written ? Some ideas.

Files contain either 1 module or 1 main program.

Model specific files have a prefix equal to the model name:

le_data . F90
le_process . F90
:

Modules have the same name as the source file:

module LE_Process
. . .
end module LE_Process

Module names (thus file names) should reflect the content:

! Data that are requ i red fo r many d i f f e r en t modules
module LE_Data

. . .
end module LE_Data

The tasks to be performed by a module could be distributed over a number of sub modules:

LE_Data # top module

LE_Data_nc LE_Data_hdf . . . # s p e c i f i c

LE_Data_Base # shared e n t i t i e s

In this case, other model routines should access the entities only via the top module:

use LE_Data , only : LE_Data_Setup
use LE_Data , only : temper , humid , t s u r f

Public routines in a module should start with the module name:

module LE_Data

p r i va te
pub l i c : : LE_Data_Setup
. . .

conta ins

subrout ine LE_Data_Setup ( t1 , t2 , s tatus )
. . .
end subrout ine LE_Data_Setup

. . .

end module LE_Data
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If a module defines public data, a module initialization and finalization routine should be
provided. These routines might be dummy to be prepared for future extensions.

module LE_Data

p r i va te
pub l i c : : the_answer
pub l i c : : LE_Data_Init , LE_Data_Done
. . .

i n teger : : the_answer

conta ins

subrout ine LE_Data_In i t ( s tatus )
. . .
! something to be done :
the_answer = 42
. . .
end subrout ine LE_Data_In i t

subrout ine LE_Data_Done ( status )
! nothing to be done .
end subrout ine LE_Data_Done

. . .

end module LE_Data

If a module defines a public type rather than public data, its name should start with the
prefix ’T_’ followed by the module name. An initialization and finalization routine should be
created, eventually doing nothing:

module R c F i l e
. . .
p r i va te
pub l i c : : T_RcF i le , R cF i LE_ In i t , RcFiLE_Done
. . .
type T_RcF i l e
in teger : : i d
. . .
end type T_RcF i l e

conta ins

subrout ine Rc F i L E _ In i t ( r c f , fname , status )
type ( T_RcF i l e ) , i n ten t ( out ) : : r c f
character ( len =*) , i n ten t ( i n ) : : fname
integer , i n ten t ( out ) : : s tatus
. . .
! something to be done :
r c f%id = 123
open ( un i t = r c f%id , f i l e =tr im ( fname ) , form= ’ formatted ’ , i o s t a t =...

... s tatus )
. . .
end subrout ine Rc F i L E _ In i t

subrout ine RcFiLE_Done ( rc f , s tatus )
type ( T_RcF i l e ) , i n ten t ( inout ) : : r c f
integer , i n ten t ( out ) : : s tatus
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. . .
! something to be done :
c lose ( r c f%id , i o s t a t =status )
. . .
end subrout ine RcFiLE_Done

. . .

end type R c F i l e

Subroutines return an integer status value:

! re turn status :
! <0 : warning
! 0 : ok
! >0 : e r r o r

subrout ine P rocess_ In i t ( s tatus )
integer , i n ten t ( out ) : : s tatus
. . .
! ok
status = 0
end subrout ine Pro ces s_ In i t

Functions are ’pure’ and preferably ’elemental’.
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